极客视点
极客时间编辑部
极客时间编辑部
113240 人已学习
免费领取
课程目录
已完结/共 3766 讲
2020年09月 (90讲)
时长 05:33
2020年08月 (93讲)
2020年07月 (93讲)
时长 05:51
2020年06月 (90讲)
2020年05月 (93讲)
2020年04月 (90讲)
2020年03月 (92讲)
时长 04:14
2020年02月 (87讲)
2020年01月 (91讲)
时长 00:00
2019年12月 (93讲)
2019年11月 (89讲)
2019年10月 (92讲)
2019年09月 (90讲)
时长 00:00
2019年08月 (91讲)
2019年07月 (92讲)
时长 03:45
2019年06月 (90讲)
2019年05月 (99讲)
2019年04月 (114讲)
2019年03月 (122讲)
2019年02月 (102讲)
2019年01月 (104讲)
2018年12月 (98讲)
2018年11月 (105讲)
时长 01:23
2018年10月 (123讲)
时长 02:06
2018年09月 (119讲)
2018年08月 (123讲)
2018年07月 (124讲)
2018年06月 (119讲)
时长 02:11
2018年05月 (124讲)
时长 03:16
2018年04月 (120讲)
2018年03月 (124讲)
2018年02月 (112讲)
2018年01月 (124讲)
时长 02:30
时长 02:34
2017年12月 (124讲)
时长 03:09
2017年11月 (120讲)
2017年10月 (86讲)
时长 03:18
时长 03:31
时长 04:25
极客视点
15
15
1.0x
00:00/04:07
登录|注册

在12家科技创业公司工作后,学到的6条经验

讲述:丁婵大小:1.88M时长:04:07
丹尼尔·申菲尔德(Daniel Shenfeld)曾在 12 家创业公司工作过,这些公司覆盖金融科技、医疗、教育技术、生物技术等多个领域,所处的阶段也各有不同,丹尼尔在不同的公司中担任各种各样的职位,他一直致力于研究有趣的机器学习和数据科学问题。本文介绍了他对产品、数据和人才的 6 条经验。
1. 关注产品,而非 AI
即便是最准确的机器学习模型也没法自己创造价值。机器学习和 AI 的价值是根据它们支持的产品来衡量的。弄清楚如何有效地做到这一点才是构建 ML 驱动产品的真正意义所在。
2. 关注问题,而非方法
如果以构建产品为目标,那么机器学习和 AI 就只是达成目标的手段。重要的是如何解决产品问题,而不是使用什么样的方法。在大多数情况中,快捷但有缺陷的方法(quick and dirty solution)会让你走得更远。如果一个问题用简单回归就能很好地解决时,就不要训练深度神经网络了。
当关注问题本身时,你有时会发现机器学习并不是解决问题的最好工具。很多问题是流程的问题。即使在这些情况下,数据科学家也可以做出很多贡献,因为他们天然倾向于采取严格、数据驱动的方法。但这并不表示用 AI 修复糟糕的流程是个好主意。只需修复流程。
3. 寻找数据和产品之间的协同效应
将现有产品和根据机器学习模型做的预测结果结合起来很少能体现出机器学习的真正价值。当然,这也会给它们加一点分,但在强大的 AI 产品中,机器学习不只是附加功能。它是创造价值的引擎,而产品是建立在引擎基础上的,产品和数据必须要协同工作。
如果做得好,就会形成强大的良性循环,产品有效地意识到数据的潜在价值,同时持续生成必要数据来进一步改进产品。
4. 数据先行,AI 在后
机器学习和 AI 都需要大量数据,更重要的是“高质量数据”。如果你要从头构建一个产品,那从第一天开始你就要考虑收集数据了。如果你要在现有产品中引入 AI 技术,那在进入 AI 部分之前,首先要准备好在数据工程和重建架构方面进行大量投入。
这并不意味着你要在实现价值前预先加载所有工作。更好的数据操作意味着更好的分析,这对任何组织的学习和改进都至关重要。利用这些成果来展示价值并产生组织认同。
5. 如有疑问,展示数据
在产品开发的早期阶段,最重要的活动是获得市场反馈。但机器学习需要大量数据,而这需要很长时间。这就出现了一个问题:如何在没有太多数据的情况下,获得市场对某个数据产品的反馈?
一般来说最好的解决方案是向用户展示数据。人类一次只能处理少量数据,所以没有太多数据也没关系。用户会如何处理你展示给他们的数据呢?他们想掩饰哪些,又想深入挖掘哪些呢?公开之前无法获取的信息是一种很强大的方法,而且能够提供数据的潜在业务价值。
6. 建立信任
信任是大多数技术成功的主要因素。在机器学习应用的背景下,有些人可能担心他们的工作会被自动化取代,其他人则正在根据技术提供的信息做出重要决策。
如果一个 AI 产品使人产生担忧,比如某个产品试图替人类做出决策,而不是让人类自主决策,这会导致信任快速流失。
确认放弃笔记?
放弃后所记笔记将不保留。
新功能上线,你的历史笔记已初始化为私密笔记,是否一键批量公开?
批量公开的笔记不会为你同步至部落
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
  • 深入了解
  • 翻译
    • 英语
    • 中文简体
    • 中文繁体
    • 法语
    • 德语
    • 日语
    • 韩语
    • 俄语
    • 西班牙语
    • 阿拉伯语
  • 解释
  • 总结
该免费文章来自《极客视点》,如需阅读全部文章,
请先领取课程
免费领取
登录 后留言

精选留言

由作者筛选后的优质留言将会公开显示,欢迎踊跃留言。
收起评论
显示
设置
留言
收藏
50
沉浸
阅读
分享
手机端
快捷键
回顶部