极客视点
极客时间编辑部
极客时间编辑部
113243 人已学习
免费领取
课程目录
已完结/共 3766 讲
2020年09月 (90讲)
时长 05:33
2020年08月 (93讲)
2020年07月 (93讲)
时长 05:51
2020年06月 (90讲)
2020年05月 (93讲)
2020年04月 (90讲)
2020年03月 (92讲)
时长 04:14
2020年02月 (87讲)
2020年01月 (91讲)
时长 00:00
2019年12月 (93讲)
2019年11月 (89讲)
2019年10月 (92讲)
2019年09月 (90讲)
时长 00:00
2019年08月 (91讲)
2019年07月 (92讲)
时长 03:45
2019年06月 (90讲)
2019年05月 (99讲)
2019年04月 (114讲)
2019年03月 (122讲)
2019年02月 (102讲)
2019年01月 (104讲)
2018年12月 (98讲)
2018年11月 (105讲)
时长 01:23
2018年10月 (123讲)
时长 02:06
2018年09月 (119讲)
2018年08月 (123讲)
2018年07月 (124讲)
2018年06月 (119讲)
时长 02:11
2018年05月 (124讲)
时长 03:16
2018年04月 (120讲)
2018年03月 (124讲)
2018年02月 (112讲)
2018年01月 (124讲)
时长 02:30
时长 02:34
2017年12月 (124讲)
时长 03:09
2017年11月 (120讲)
2017年10月 (86讲)
时长 03:18
时长 03:31
时长 04:25
极客视点
15
15
1.0x
00:00/04:20
登录|注册

全球首个联邦学习工业级开源框架FATE两大更新

讲述:初明明大小:3.96M时长:04:20
近两年来,联邦学习发展迅速,其作为分布式的机器学习范式,能够有效解决数据孤岛问题,让参与方在不共享数据的基础上联合建模,从技术上打破数据孤岛,实现 AI 协作。而 FATE 作为联邦学习全球首个工业级开源框架,支持联邦学习架构体系,为机器学习、深度学习、迁移学习提供了高性能联邦学习机制。此外,其自身还支持多种多方安全计算协议,如同态加密、秘密共享、哈希散列等,具有友好的跨域交互信息管理方案。
近日,全球首个联邦学习工业级开源框架 FATE 1.2 版本正式发布,在该版本中,FATE 推出了两大重量级的更新项,分别为对纵向联邦 DNN 的支持以及对多方安全计算 SPDZ 协议的支持。作为首个支持纵向联邦神经网络算法的版本,开发者在纵向联邦建模的分类、回归、排序等场景下都可以明显感受到其支持性。而 SPDZ 秘密共享安全计算协议的支持,进一步拓展和丰富了 FATE 的应用场景。
在之前的 1.0 大版本中,FATE 上线了首个可视化联邦学习产品与联邦 Pipeline 生产服务。而在 1.1 大版本中,FATE 联合 VMware 中国研发开放创新中心云原生实验室联合发布了 KubeFATE 项目,通过把 FATE 的所有组件用容器的形式封装,实现了使用 Docker Compose 或 Kubernetes(Helm Charts)来部署。
前两个版本分别在可视化使用体验及部署体验上做了重点提升,而 FATE 1.2 版本则回归至算法本身,进一步拓展其支持性。除两大重量级更新项以外,还新增了如二阶优化方法 - 纵向 SQN、数据管理模块等功能,前者能够显著提升纵向逻辑回归和纵向线性回归收敛效率,对算法加速起到关键作用。后者则用于记录 upload 的数据表及 Job 运行中模型的输出结果,并提供查询以及清理 CLI,项目已开源在 GitHub 上
在 FATE 1.2 版本中,首次对外发布了纵向联邦深度学习框架,开启了 FATE 对深度学习联邦化的支持,开发者可以自定义深度神经网络结构。目前版本已支持 TensorFlow, 后续会推出 PyTorch 版本,便于开发者低代价迁移 TensorFlow 和 PyTorch 的使用习惯和经验。
在这一版本中,FATE 实现了 SPDZ 秘密共享多方安全计算协议的支持,这意味在现有同态加密协议的基础上,FATE 能为开发者提供更多样化的多方安全计算协议支持。开发者们可根据自身算法的特点,自由选择适合自身算法的多方安全计算协议,联邦学习的可应用范围得到进一步拓展。值得说明的是,在纵向皮尔逊特征相关性计算算法实现中,首次使用了 SPDZ 协议。
此外,自 1.0 版本推出 FATE-Board 以来,这一产品受到了开发者广泛好评。而在 1.2 版本中,FATE-Board 再次升级,新增了对联邦模式下特征相关性、以及 LocalBaseline 组件的可视化支持。前者能够直观地分析特征之间的相关性分布情况,从而帮助开发者快速进行判断与特征选择。后者则可以让开发者将基于联邦训练的模型与基于 sklearn 训练的模型结果进行直接对比,并从可视化报告对比中得出相关结论。
同时,这一版本的 FATE-Board 还高度优化了可视化效果及交互操作,并增强了实用性,让开发者体验再上一层楼。
还有一点值得关注的是,在 FATE 1.2 版本中,FATE 新增加了数据管理模块,这将成为开启数据治理的第一步。从这一版本开始,在整个 Job 生命周期产生的数据都有迹可循了。此外,数据管理模块提供了诸如查询、删除等常用管理命令,这也极大地增强了开发者对数据的掌控能力。
以上就是今天的内容,希望对你有所帮助。查看更多详细内容可查阅 FATE 官网项目贡献者指南
确认放弃笔记?
放弃后所记笔记将不保留。
新功能上线,你的历史笔记已初始化为私密笔记,是否一键批量公开?
批量公开的笔记不会为你同步至部落
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
  • 深入了解
  • 翻译
    • 英语
    • 中文简体
    • 中文繁体
    • 法语
    • 德语
    • 日语
    • 韩语
    • 俄语
    • 西班牙语
    • 阿拉伯语
  • 解释
  • 总结
该免费文章来自《极客视点》,如需阅读全部文章,
请先领取课程
免费领取
登录 后留言

精选留言

由作者筛选后的优质留言将会公开显示,欢迎踊跃留言。
收起评论
显示
设置
留言
收藏
16
沉浸
阅读
分享
手机端
快捷键
回顶部