极客视点
极客时间编辑部
极客时间编辑部
113241 人已学习
免费领取
课程目录
已完结/共 3766 讲
2020年09月 (90讲)
时长 05:33
2020年08月 (93讲)
2020年07月 (93讲)
时长 05:51
2020年06月 (90讲)
2020年05月 (93讲)
2020年04月 (90讲)
2020年03月 (92讲)
时长 04:14
2020年02月 (87讲)
2020年01月 (91讲)
时长 00:00
2019年12月 (93讲)
2019年11月 (89讲)
2019年10月 (92讲)
2019年09月 (90讲)
时长 00:00
2019年08月 (91讲)
2019年07月 (92讲)
时长 03:45
2019年06月 (90讲)
2019年05月 (99讲)
2019年04月 (114讲)
2019年03月 (122讲)
2019年02月 (102讲)
2019年01月 (104讲)
2018年12月 (98讲)
2018年11月 (105讲)
时长 01:23
2018年10月 (123讲)
时长 02:06
2018年09月 (119讲)
2018年08月 (123讲)
2018年07月 (124讲)
2018年06月 (119讲)
时长 02:11
2018年05月 (124讲)
时长 03:16
2018年04月 (120讲)
2018年03月 (124讲)
2018年02月 (112讲)
2018年01月 (124讲)
时长 02:30
时长 02:34
2017年12月 (124讲)
时长 03:09
2017年11月 (120讲)
2017年10月 (86讲)
时长 03:18
时长 03:31
时长 04:25
极客视点
15
15
1.0x
00:00/05:06
登录|注册

观点:数据中台不是技术平台,没有标准架构

讲述:子阳大小:2.33M时长:05:06
当“数据中台”的热风吹起时,我们看到了很多不同类型的公司都声称自己可以搭建数据中台或是数据中台的一部分,这其中当然免不了有些是跟风、够概念。如何区分跟风与实干,数据中台到底是什么?Kyligence 联合创始人兼 CTO 李扬谈了谈他对数据中台的理解。
李扬认为从数据中台的由来看,数据中台首先是个企业管理概念,主要是通过复用数据资产来驱动前线业务的高速创新和改造,从企业管理层面看,数据中台是个组织,它提供 3 方面的东西:共享的数据服务(Data-as-a-Service)、集中治理数据资产(Goverance)和用数据改造业务(Data changes business)。
数据中台的出现是有其时代背景的,如果市场处于空白期,我们根本就不需要数据来辅助决策,当红利期过后,存量市场变得越来越小,这时企业之间就要比拼谁的服务质量更高、谁的成本更低、人效更高。于是,就出现了之前爆火的信息化,企业从手工作坊式转型到用电子系统来管理。当企业完成了内部的组织架构调整和信息化,并且简单的、侵略性的市场推广不再奏效时,才适合聊数字化驱动前线业务的高速创新增长,也正是在这个时间节点才会出现“数据中台”这样的概念。
那为什么很多人在谈到“数据中台”的时候都谈到技术呢?李扬解释道,在信息化时代,负责数据中台的组织,其主要职责就是维护数据、并提供数据服务,而他们使用的工具通常是电子信息相关的技术,所以很自然的,数据中台就会从一个企业管理概念过渡到技术概念。
从技术概念来看,数据中台和另一个平行概念有点相像——数据平台。如果非要在技术概念的层面给数据中台下定义,数据中台就是以驱动业务为目的的数据平台。对应前面提到的数据中台包含的三个内容,数据平台本身就提供共享的数据服务和集中治理数据资产。
所以数据中台和数据平台的区别就在于是否以数据驱动业务为目的,并不是所有的数据平台都有此目的,例如 Data Lake 是整个数据链条中比较靠底层的部分,它不是直接来驱动业务的,而是为了向上上一层的数据仓库或者更上层提供数据,所以,Data Lake 不能称之为数据中台,顶多可以称为数据中台的一部分。
想要实现数据中台,李扬认为关键有三步:第一步,需要有个完整的地方把所有数据串联起来;第二步,数据需要打通,并被整理好;第三步,数据要能够驱动业务增长。其中,只有第二步和软件架构有关系,其它两步与软件架构的关联都不是那么紧密,第一步是信息化,第三步与管理层更紧密。
现在谈数据中台的企业特别多,这些企业大致可分为三类:第一类是做大数据营销、SaaS 企业,第二类是数据库、数据仓库、开发平台类企业;第三类是外包咨询类软件企业。当然,这些企业中不乏有炒概念的,但除去这些,我们来看看这三类企业和数据中台有哪些联系?
首先,大数据营销、SaaS 企业:这类企业主要提供的是共享的数据服务,即 Data-as-a-Service。更直白点说,它们具备一定的数据能力,是一个工具可以被用来建设数据中台。当他们理解了用户的业务增长方式,并把这种增长方式与其 SaaS 产品结合起来,那么勉强可以成为数据中台,否则他们永远提供的是数据服务。
其次,数据库、数据仓库、平台开发类企业:数据库其实是在数据中台更低一层的系统,企业因为信息化的历史周期不同,会沉淀非常多的数据系统。如果我们认可数据中台从最底层到最上层分别为 Data Lake、Data Warehouse 和 Data Mart,那么数据库、数据仓库等企业只能是数据中台的一部分,无法成为一个完整的数据平台。
最后,外包咨询类企业:与前两类企业相比,这类企业提供的更多的是一个解决方案,根据客户定制化需求交付产品。同时也可能是对“数据中台”概念理解最深刻的一类企业。
李扬表示,数据中台不是个新概念,数据中台的建设一定会伴随着企业组织架构调整,这才是真正切到了数据中台的关键。另外,不要试图把中台做成一个标准的架构,这不现实,因为每个企业的业务不同。最好的情况是提供一个参考架构,在此基础上定制出自己的框架。
确认放弃笔记?
放弃后所记笔记将不保留。
新功能上线,你的历史笔记已初始化为私密笔记,是否一键批量公开?
批量公开的笔记不会为你同步至部落
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
  • 深入了解
  • 翻译
    • 英语
    • 中文简体
    • 中文繁体
    • 法语
    • 德语
    • 日语
    • 韩语
    • 俄语
    • 西班牙语
    • 阿拉伯语
  • 解释
  • 总结
该免费文章来自《极客视点》,如需阅读全部文章,
请先领取课程
免费领取
登录 后留言

精选留言

由作者筛选后的优质留言将会公开显示,欢迎踊跃留言。
收起评论
显示
设置
留言
收藏
92
沉浸
阅读
分享
手机端
快捷键
回顶部