极客视点
极客时间编辑部
极客时间编辑部
113243 人已学习
免费领取
课程目录
已完结/共 3766 讲
2020年09月 (90讲)
时长 05:33
2020年08月 (93讲)
2020年07月 (93讲)
时长 05:51
2020年06月 (90讲)
2020年05月 (93讲)
2020年04月 (90讲)
2020年03月 (92讲)
时长 04:14
2020年02月 (87讲)
2020年01月 (91讲)
时长 00:00
2019年12月 (93讲)
2019年11月 (89讲)
2019年10月 (92讲)
2019年09月 (90讲)
时长 00:00
2019年08月 (91讲)
2019年07月 (92讲)
时长 03:45
2019年06月 (90讲)
2019年05月 (99讲)
2019年04月 (114讲)
2019年03月 (122讲)
2019年02月 (102讲)
2019年01月 (104讲)
2018年12月 (98讲)
2018年11月 (105讲)
时长 01:23
2018年10月 (123讲)
时长 02:06
2018年09月 (119讲)
2018年08月 (123讲)
2018年07月 (124讲)
2018年06月 (119讲)
时长 02:11
2018年05月 (124讲)
时长 03:16
2018年04月 (120讲)
2018年03月 (124讲)
2018年02月 (112讲)
2018年01月 (124讲)
时长 02:30
时长 02:34
2017年12月 (124讲)
时长 03:09
2017年11月 (120讲)
2017年10月 (86讲)
时长 03:18
时长 03:31
时长 04:25
极客视点
15
15
1.0x
00:00/05:10
登录|注册

推动边缘计算的发展的四个关键因素

讲述:初明明大小:4.73M时长:05:10
日前,知名市场研究机构 State of the Edge 发布了最新的对边缘计算领域的研究报告——《State of Edge 2020》。该报告指出边缘计算将在多个领域发挥重要作用,对此,华为云原生团队在 InfoQ 发文,从边缘计算的应用领域、推动边缘计算发展的四个关键因素和未来云数据中心与边缘的融合方向这三个方面解读了报告内容。以下为“推动边缘计算发展的四个关键因素”的部分,希望能给你带来启发。
到 2028 年,边缘市场将由消费者应用程序主导,随着以边缘平台为中心的产品的成熟,边缘使用场景的种类和范围预计将大大增加。但并不是说边缘计算会取代当今的互联网,相反,边缘计算是超大规模数据中心的补充,并且将随着超大规模数据中心的出现而激增,因为这两者都是受消费者和企业不断增长的数字需求推动的。用户在互联网体验方面的四大需求趋势推动了边缘计算的发展。

1. 用户对数据延迟容忍度降低

新应用和新场景的出现使网络结构更加复杂,不同的应用和场景对于网络的性能要求不尽相同。 在直播、VR、AR 等用户参与程度较高的场景中,数据传输高延迟会严重影响用户交互流畅程度,时延可以被认为是影响用户体验的决定性因素。
在自动驾驶场景中,车辆要实时感知复杂的交通环境,并且车辆要与其他车辆、行人、道路设施之间进行低时延通信,数据传输延迟是保障自动驾驶安全性的一个重要因素。同样在工业互联网场景下,工业自动化设备需要实时接收操作控制指令,数据传输延迟也是保证产品质量的一个重要因素。在远程机器人手术场景中,手术效果依赖于现场向外科医生提供的实时反馈,任何延迟都会严重影响外科医生的判断。可以看出,边缘计算正在逐渐以满足机器的速度要求为目标,这种对数据传输延迟的低容忍度激发了相关产业对于边缘设备和网络的需求。

2. 数据量快速上升和带宽不足的矛盾加剧

万物互联环境下,随着边缘设备数量的增加,这些设备产生的数据量也在激增,导致网络带宽逐渐成为了云计算的一个瓶颈。数以亿计的智能终端设备连入网络,生成 ZB 量级的数据,这些大数据中所包含的信息对应用服务至关重要。从这些大数据中分析和提取信息的过程中,使用边缘服务器可以缓解数据量快速上升和带宽不足之间的矛盾。例如,在边缘服务器中收集和分析数据,然后将数据分析的结果传递到核心网以进一步处理,从而减轻核心网的压力。

3. 用户对于数据处理成本的顾虑

随着在云服务器运行的用户应用程序越来越多,未来大规模数据中心对成本的需求将难以满足,这在万物互联的场景下将更加突出。对于边缘侧产生的越来越多的数据,网络传输、数据存储、数据运算处理及处理后结果回传等方面都会产生大量的资源消耗和处理成本。对于很多应用场景来说,例如边缘视频处理业务,如果不经过边缘预处理,直接将原始数据全部传输到云端进行处理,会导致大量的冗余处理。边缘计算服务可以将这些视频数据在边缘侧进行预处理之后,提取关键信息传输到云端,这种处理模式能够极大地节约数据处理成本。

4. 用户对明确数据拥有权、安全性和合规性的需求提升

随着智能家居的普及,许多家庭在屋内安装网络摄像头,直接将摄像头收集的视频数据上传至云计算中心会增加泄露用户隐私数据的风险。因此用户并不总是愿意将数据上传至云端进行处理,尤其是一些家庭内部视频数据。而边缘计算可以将这些数据处理推送至家庭内部网关,减少隐私数据的外流,从而降低数据外泄的可能性,提升系统的隐私性。
对于很多工业场景来说,将所有数据上传到云端进行处理,不仅会遇到恶意攻击导致工业数据泄露的风险,还可能会产生数据所有权分歧导致的商业纠纷,因此很多工业用户也不愿意将数据上传至云端进行处理。为了满足这些用户连接到公共网络场景中的多样化安全性需求,边缘计算需要在本地部署计算资源,将计算推至靠近用户的地方,避免了数据上传到云端的过程,降低了隐私数据泄露的可能性。
以上就是推动边缘计算的发展的四个关键因素,了解更多可点击原文链接查看。
确认放弃笔记?
放弃后所记笔记将不保留。
新功能上线,你的历史笔记已初始化为私密笔记,是否一键批量公开?
批量公开的笔记不会为你同步至部落
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
  • 深入了解
  • 翻译
    • 英语
    • 中文简体
    • 中文繁体
    • 法语
    • 德语
    • 日语
    • 韩语
    • 俄语
    • 西班牙语
    • 阿拉伯语
  • 解释
  • 总结
该免费文章来自《极客视点》,如需阅读全部文章,
请先领取课程
免费领取
登录 后留言

全部留言(1)

  • 最新
  • 精选
  • 小斧
    1. 用户对数据延迟容忍度降低 2. 数据量快速上升和带宽不足的矛盾加剧 3. 用户对于数据处理成本的顾虑 4. 用户对明确数据拥有权、安全性和合规性的需求提升
    1
收起评论
大纲
固定大纲
1. 用户对数据延迟容忍度降低
2. 数据量快速上升和带宽不足的矛盾加剧
3. 用户对于数据处理成本的顾虑
4. 用户对明确数据拥有权、安全性和合规性的需求提升
显示
设置
留言
1
收藏
18
沉浸
阅读
分享
手机端
快捷键
回顶部