新AI芯片出炉,可在纳秒内完成图像识别任务
极客时间编辑部
讲述:初明明大小:3.98M时长:04:21
你好,欢迎收听极客视点。
维也纳大学的工程师团队在《自然》杂志上刊登了一种新的视觉系统研究成果,该系统设计模仿了人脑对信息的处理方式,只用纳秒级的时间就能对简单图像进行分类。InfoQ 中文站对该研究成果的原理及过程进行了编译,如下。
下图显示了输入信息在视觉传感器内进行计算,实现智能、高效的预处理的流程:
传统的人工智能 (AI) 视觉传感器正如图(a)所示,信号在光响应传感器上进行收集,通过模数转换器(ADC)将模拟信号转换为数字信号,放大后作为输入提供给外部的人工神经网络 (ANN),再经过参数调优训练神经网络,可以用来执行诸如图像分类等任务。神经网络的输入层接收编码简单物理元素的信号 (这里用点和线表示),在随后的层中,这些信号被优化为中级特征 (简单的形状),最后在输出层 (3D 形状) 形成精细的图像。整体的响应可能是比较缓慢和耗能的。
维也纳大学的工程师团队研发的视觉系统如图(b)所示,在这个系统中,芯片上的相互连接的传感器 (正方形) 不仅可以收集信号,而且还可以作为一个神经网络来识别简单的特征,从而减少传感器和外部电路之间冗余数据的移动。
研究人员在他们的图像传感器中直接实现了一个人工神经网络。在芯片上,他们构建了一个光二极管网络,这些光二极管是微小的光敏元件,每一个都由几层二硒化钨原子组成。二硒化钨对光的响应可以通过改变施加的电压来增加或减少,因此每个二极管的灵敏度可以单独调整。这就将光敏传感器网络转变为了一个神经网络 (图 1b),并使其能够执行简单的计算任务。改变光电二极管的光响应度,也就会改变网络中的连接权重。因此,该装置其实是结合了光学传感和神经形态计算。
但在这项技术实际落地应用之前,还有很多工作要做。首先,用于自动驾驶汽车和机器人的神经形态视觉系统,需要在三维空间和广阔的视野中捕捉动态图像和视频。而目前使用的图像捕获技术通常是将三维现实世界转换为二维信息,丢失掉运动信息和深度。现有图像传感器阵列的平面形状也制约着广角相机的发展。
其次,该系统的传感器设备很难在昏暗的光线下成像,需要重新设计,以改善半导体的光吸收能力,并增加可检测到的光强范围。此外,该设计要求高电压,功耗大。相比之下,在生物神经网络中,每次操作的能量消耗在亚焦耳级(10 -15 至 10 -13 焦耳)。充分扩大对紫外线和红外光的响应范围,捕捉可见光光谱中得不到的信息,对后续技术优化也会很有帮助。
还有一点,研究使用的薄半导体很难在大范围内均匀生产,而且很难加工处理,因此它们很难与硅电子器件集成,比如用于读出或反馈控制的外部电路。使用这些传感器的设备的速度和能源效率将不是由图像捕获过程决定的,而是由传感器和外部电路之间的数据移动决定的。此外,虽然传感器内的计算单元在模拟域收集和计算数据,减少了模拟到数字的转换,但外围电路仍然受到其他固有延迟的影响。传感器和外部电路将需要协同开发,以减少整个系统的延迟。
维也纳大学工程师团队的“传感器内计算系统”应该会激发业内对人工智能硬件的进一步研究。一些公司已经开发了基于硅电子的人工智能视觉芯片,但这些芯片固有的数字体系架构往往带有延迟和电力效率问题。
从更广泛意义来讲,该研究团队的策略并不局限于视觉系统。它可以扩展到其他物理输入,如听觉、触觉、热感或嗅觉感知等。这种智能系统的发展,加上 5G 高速无线网络的到来,应该会让未来的实时 (低延迟) 边缘计算成为可能。
以上就是今天的内容,希望对你有所帮助。
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
- 深入了解
- 翻译
- 解释
- 总结
该免费文章来自《极客视点》,如需阅读全部文章,
请先领取课程
请先领取课程
免费领取
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
登录 后留言
全部留言(3)
- 最新
- 精选
- 小斧一切智能都是芯片。1
- Sephirothu各种先进的技术,让我对未来充满期待
- Never give up新的AI芯片的出现并不局限于图像识别,还可以扩展到其他物理输入,例如听觉 嗅觉等,再加上5G时代的来临,未来一片大好。
收起评论