详解达摩院预测:计算存储一体化突破AI算力瓶颈
极客时间编辑部
讲述:初明明大小:3.77M时长:04:07
近日,阿里达摩院发布了《2020 十大科技趋势》,该报告包含了人工智能、区块链、芯片、量子计算等诸多领域。公众号“AI 前线”第一时间获悉报告列表,并对其中部分趋势邀请了专家进行详细解读。
趋势预测
在报告中,十大趋势之一是“计算存储一体化突破 AI 算力瓶颈”。报告指出,冯·诺伊曼架构的存储和计算分离,已经不适合数据驱动的人工智能应用需求。频繁的数据搬运导致的算力瓶颈以及功耗瓶颈已经成为对更先进算法探索的限制因素。类似于脑神经结构的存内计算架构将数据存储单元和计算单元融合为一体,能显著减少数据搬运,极大提高计算并行度和能效。计算存储一体化在硬件架构方面的革新,将突破 AI 算力瓶颈。
详细解读
经典的冯·诺伊曼计算机架构中,存储单元和计算单元泾渭分明。运算时,需要将数据从存储单元读取到计算单元,运算后会把结果写回存储单元。在大数据驱动的人工智能时代,AI 运算中数据搬运更加频繁, 需要存储和处理的数据量远远大于之前常见的应用。
当运算能力达到一定程度,由于访问存储器的速度无法跟上运算部件消耗数据的速度,再增加运算部件也无法得到充分利用,即形成所谓的冯·诺伊曼“瓶颈”,或“内存墙”问题。这就好比一台马力强劲的发动机,却因为输油管的狭小而无法产生应有的动力。
计算力瓶颈以及功耗瓶颈已经对更先进、复杂度更高的 AI 模型研究产生了限制。例如,最先进的自然语言处理模型 XLNet 有约 4 亿模型参数,每次训练需要数百个谷歌深度学习加速器 TPU 运算三天,耗资超过 10 万美元。而据估算,人脑中细胞间互联轴突个数在百万亿到千万亿数量级,两者相差约六个数量级。显然 AI 在认知问题上离我们追求的的所谓通用人工智能还有巨大差距,预计将需要计算能力和计算系统的能源效率比现在至少提高几个数量级。因此人工智能要进一步突破,必须采用新的计算架构,解决存储单元和计算单元分离带来的算力瓶颈。
计算存储一体化,类似于人脑,将数据存储单元和计算单元融合为一体,能显著减少数据搬运,极大提高计算并行度和能效。计算存储一体化的研究无法一蹴而就。对于广义上计算存储一体化计算架构的发展,近期策略的关键在于通过芯片设计、集成、封装技术拉近存储单元与计算单元的距离,增加带宽,降低数据搬运的代价,缓解由于数据搬运产生的瓶颈。
而中期规划,通过架构方面的创新,设存储器于计算单元中或者置计算单元于存储模块内,可以实现计算和存储你中有我,我中有你。远期展望,通过器件层面的创新,实现器件即是存储单元也是计算单元,不分彼此,融合一体,成为真正的计算存储一体化。近年来,一些新型非易失存储器,如阻变内存,显示了一定的计算存储融合的潜力。
计算存储一体化正在助力、推动算法升级,成为下一代 AI 系统的入口。存内计算提供的大规模更高效的算力,使得算法设计有更充分的想象力,不再受到算力的约束。从而将硬件上的先进性,升级为系统、算法的领先优势,最终加速孵化新业务。
更进一步,计算存储一体化是一个 game-changer,开辟了一条新赛道。它的出现将通过迫使产业升级,重构现在处理器和存储器的相对垄断的产业格局。在此过程中,可以帮助更多芯片行业中小企业发展,更为国产芯片的弯道超车创造了机会。
以上就是今天的内容,希望对你有所帮助。
下载完整版白皮书,请访问: https://damo.alibaba.com/events/57
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
- 深入了解
- 翻译
- 解释
- 总结
该免费文章来自《极客视点》,如需阅读全部文章,
请先领取课程
请先领取课程
免费领取
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
登录 后留言
精选留言
由作者筛选后的优质留言将会公开显示,欢迎踊跃留言。
收起评论