技术与商业案例解读
徐飞
华为云资深总监,大数据专家
立即订阅
10161 人已学习
课程目录
已完结 163 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 | 突破技术思维,站在商业的角度看问题
免费
001 | 西雅图IT公司之RealNetworks:一个帝国的兴衰(上)
002 | 西雅图IT公司之RealNetworks:一个帝国的兴衰(下)
003 | 以RealNetworks为例,谈谈初创公司如何应对巨头碾压
004 | 可视化分析鼻祖Tableau
005 | 从Tableau上市,看学术界和工业界人士创业
006 | 在线旅游帝国Expedia崛起的背后
007 | 房产经纪的颠覆者Redfin:在“传统”与“现代”间徘徊
008 | 房产经纪的“协作者”Zillow:一个地产数据平台
009 | 颠覆还是协作,房地产市场上Redfin和Zillow的抉择
010 | 应用交付网络大厂F5:“一招鲜”之殇
011 | 在线差旅报销鼻祖Concur:在转型中获得发展
012 | 漫谈企业转型:在市场变迁中寻找生机
013 | 克雷公司沉浮录:行走在超级计算机市场
014 | “单一化”的隐忧:从克雷公司看“一条腿走路”
015 | Halo的开发者Bungie:与微软的聚散
016 | “卖身”须谨慎:创业公司面临的抉择
017 | 亚马逊领导力准则之要有硬骨头
018 | 亚马逊领导力准则之决策正确
019 | 亚马逊领导力准则之客户至尚
020 | 亚马逊领导力准则之勤俭节约
021 | 亚马逊领导力准则之主人翁精神
022 | 亚马逊领导力准则之选贤育能
023 | 亚马逊领导力准则之最高标准
024 | 亚马逊领导力准则之创新简化
025 | 亚马逊领导力准则之崇尚行动
026 | 亚马逊领导力准则之远见卓识
027 | 亚马逊领导力准则之好奇求知与赢得信任
028 | 亚马逊领导力准则之刨根问底与达成业绩
029 | 智能音箱的战斗:亚马逊的硬件路
030 | 智能音箱的战斗:Echo攻城略地
031 | 智能音箱的战斗:语音助手Alexa
032 | 智能音箱的战斗:谷歌的杀入
033 | 智能音箱的战斗:亚马逊的战略布局
034 | 智能音箱的战斗:巨头纷纷入场
035 | 智能音箱的战斗:白马非马
036 | 如何透过一个领域去联合分析多家企业?
037 | 管中窥豹之从面试看企业文化:微软
038 | 管中窥豹之从面试看企业文化:亚马逊
039 | 管中窥豹之从面试看企业文化:谷歌
040 | 管中窥豹之从面试看企业文化:甲骨文
041 | 管中窥豹之从面试看企业文化:Facebook
042 | 透过企业用人之道看企业发展
043 | 办公软件的战斗:开篇
044 | VisiCalc:第一个电子表格软件的诞生
045 | WordStar:第一个字处理软件的故事
046 | 微软:办公软件战场的螳螂
047 | WordPerfect:字处理软件的新秀
048 | Lotus 1-2-3:莲花公司的电子表格帝国
049 | 红狮会战:微软的反击
050 | 大杀器Lotus Notes 和被收购的莲花公司
051 | 无敌寂寞的微软之为创新而创新
052 | 办公软件的新时代:微软和谷歌的战斗
053 | 异军突起的Slack
054 | 办公软件战斗的启示:内忧总是强于外患
055 | 办公软件战斗的启示:敌人的出现常常出其不意
056 | 半条命的Dota帝国Valve:半条命
057 | 半条命的Dota帝国Valve:Steam平台
058 | 半条命的Dota帝国Valve:Dota 2
059 | 半条命的Dota帝国Valve:无领导管理
060 | 半条命的Dota帝国Valve:虚拟现实
061 | Gabe Newell:Valve帝国制度的利弊
062 | 文档数据库的缔造者MongoDB(上)
063 | 文档数据库的缔造者MongoDB(下)
064 | 以MongoDB为例,看基础架构类产品创业
065 | 直面MongoDB,谈微软的NoSQL战略
066 | Hadoop三国之魏国Cloudera
067 | Hadoop三国之吴国MapR
068 | Hadoop三国之蜀国Hortonworks
069 | Hadoop及其发行商的未来
070 | 谷歌的大数据路:从“三驾马车”到一无所有
071 | 谷歌的大数据路:一场影响深远的论战
072 | 谷歌的大数据路:谷歌的“黑科技”
073 | 如何读懂类似谷歌“三驾马车”这样的技术论文?
074 | 雅虎:大数据领域的“活雷锋”
075 | IBM的大数据路之起早贪黑赶了晚集
076 | 社交公司们的大数据贡献
077 | 微软的大数据发展史:微软硅谷研究院
078 | 微软的大数据发展史:必应的Cosmos
079 | 微软的大数据发展史:Azure的大数据发展
080 | 亚马逊的大数据故事:从先驱者到插管吸血开源
081 | 亚马逊的大数据故事:创新和拿来并存的云服务
082 | 阿里巴巴的大数据故事:数据分析平台发展史
083 | 阿里巴巴的大数据故事:流计算引擎发展史
084 | 大公司的大数据战略得失:自建轮子成本高
085 | 大公司的大数据战略得失:抱团取暖难敌插管吸血者
086 | Palantir:神秘的大数据独角兽
087| Splunk:机器大数据的分析帝国
088 | Confluent:在Kafka上飞驰的数据交换者
089 | Powerset:HBase的老东家
090 | Cassandra和DataStax的故事
091 | Databricks之Spark的数据金砖王国
092 | Data Artisans:浴火重生的新一代大数据计算引擎Flink
093 | Dremio:在Drill和Arrow上的大数据公司
094 | Imply:基于Druid的大数据分析公司
095 | Kyligence:阿帕奇麒麟背后的大数据公司
096 | Snowflake:云端的弹性数据仓库
097 | TiDB:一个国产新数据库的创业故事
098 | 大数据创业公司的前景:红海创业多艰辛
099 | 如何通过企业技术积累去分析一家企业?
技术与商业案例解读
登录|注册

005 | 从Tableau上市,看学术界和工业界人士创业

徐飞 2017-10-13
上一次,我说到了 Tableau 的创业和发展史,它是一个非常典型的学术界人士出来创业并且成功的例子。这之前我们还看到了 RealNetworks 的故事,这是一个创始人在微软工作很多年之后,决定出来创业的例子。当然,后面我还会给你讲述许许多多这样的例子。
Tableau 和 RealNetworks 的例子恰好可以代表现实中的两类创业者,他们在创业方式和模式上其实都有所不同,他们擅长和不擅长的地方也各不相同。那么,这两类创业者具体有何异同,分别又有什么优势和劣势呢?今天,我就和你聊聊这个话题。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《技术与商业案例解读》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(9)

  • Will
    一口气今天听到这里,赞。
    2018-09-30
    4
  • Lisa
    想起了研究生阶段跟着导师做语义位置模型时遇到的困难,只注重追求前沿,却不知道模型到底要怎样落地。做学术与做产品有着太大的不同,学术往往很容易忽视商业模式。

    作者回复: 我读博士的时候也是这样,走出校门几年才好点。

    2019-08-21
    2
  • 蓝雾里的部落
    让我想到做算法,做工程的人之间的矛盾和鄙视链。

    作者回复: 哈哈哈

    2019-03-31
    2
  • 做技术与做产品的差距,也是这样的。

    这种差距的根源是做研究和做产品的本质要求不同:做研究的人,只需要实现一个想法,做最核心、最精彩的那一部分;而做产品的人,有很多边边角角的事情需要解决。一个可以演示的学术产品,和一个可用的工业界产品,其质量差距是非常大的。
    2018-07-03
    1
  • 摘星星种星星
    在学校时候想用啥技术就用啥技术,毕业工作后蒙圈了,好老的技术,数据库竟然不设计外键,这数据库怎么设计成这样?
    2019-12-02
  • 关钊
    这种技术线上再工业化过程,在公司管理上也是有类似。
    初创,和高速发展阶段会掩盖很多管理上,规范和流程上的问题。等到规模大了后一定会要进行一次流程再造才有可能继续前进扩张,否则就只能停滞甚至后退了。
    2019-10-12
  • self-discipline
    学术界属于浪漫主义者,不看生活的柴米油盐;工业界是现实主义者,需要脚踏实地把想法给实现出来
    2019-09-29
  • 村长@极客时间
    再优秀的人都要认识自己的不足,予以弥补。
    2019-03-11
  • caohuan
    学术界 与 工业界 不一样,学术界 有点眼高手低,技术前瞻性很强,工业界 动手能力很强,商业化能力较强,一旦成功 回报多多。
    2018-11-29
收起评论
9
返回
顶部