AI技术内参
洪亮劼
Etsy数据科学主管,前雅虎研究院资深科学家
立即订阅
8829 人已学习
课程目录
已完结 166 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 (1讲)
开篇词 | 你的360度人工智能信息助理
免费
人工智能国际顶级会议 (31讲)
001 | 聊聊2017年KDD大会的时间检验奖
002 | 精读2017年KDD最佳研究论文
003 | 精读2017年KDD最佳应用数据科学论文
004 | 精读2017年EMNLP最佳长论文之一
005 | 精读2017年EMNLP最佳长论文之二
006 | 精读2017年EMNLP最佳短论文
007 | 精读2017年ICCV最佳研究论文
008 | 精读2017年ICCV最佳学生论文
009 | 如何将“深度强化学习”应用到视觉问答系统?
010 | 精读2017年NIPS最佳研究论文之一:如何解决非凸优化问题?
011 | 精读2017年NIPS最佳研究论文之二:KSD测试如何检验两个分布的异同?
012 | 精读2017年NIPS最佳研究论文之三:如何解决非完美信息博弈问题?
013 | WSDM 2018论文精读:看谷歌团队如何做位置偏差估计
014 | WSDM 2018论文精读:看京东团队如何挖掘商品的替代信息和互补信息
015 | WSDM 2018论文精读:深度学习模型中如何使用上下文信息?
016 | The Web 2018论文精读:如何对商品的图片美感进行建模?
017 | The Web 2018论文精读:如何改进经典的推荐算法BPR?
018 | The Web 2018论文精读:如何从文本中提取高元关系?
019 | SIGIR 2018论文精读:偏差和“流行度”之间的关系
020 | SIGIR 2018论文精读:如何利用对抗学习来增强排序模型的普适性?
021 | SIGIR 2018论文精读:如何对搜索页面上的点击行为进行序列建模?
022 | CVPR 2018论文精读:如何研究计算机视觉任务之间的关系?
023 | CVPR 2018论文精读:如何从整体上对人体进行三维建模?
024 | CVPR 2018论文精读:如何解决排序学习计算复杂度高这个问题?
025 | ICML 2018论文精读:模型经得起对抗样本的攻击?这或许只是个错觉
026 | ICML 2018论文精读:聊一聊机器学习算法的“公平性”问题
027 | ICML 2018论文精读:优化目标函数的时候,有可能放大了“不公平”?
028 | ACL 2018论文精读:问答系统场景下,如何提出好问题?
029 | ACL 2018论文精读:什么是对话中的前提触发?如何检测?
030 | ACL 2018论文精读:什么是“端到端”的语义哈希?
复盘 7 | 一起来读人工智能国际顶级会议论文
搜索核心技术 (28讲)
031 | 经典搜索核心算法:TF-IDF及其变种
032 | 经典搜索核心算法:BM25及其变种(内附全年目录)
033 | 经典搜索核心算法:语言模型及其变种
034 | 机器学习排序算法:单点法排序学习
035 | 机器学习排序算法:配对法排序学习
036 | 机器学习排序算法:列表法排序学习
037 | “查询关键字理解”三部曲之分类
038 | “查询关键字理解”三部曲之解析
039 | “查询关键字理解”三部曲之扩展
040 | 搜索系统评测,有哪些基础指标?
041 | 搜索系统评测,有哪些高级指标?
042 | 如何评测搜索系统的在线表现?
043 | 文档理解第一步:文档分类
044 | 文档理解的关键步骤:文档聚类
045 | 文档理解的重要特例:多模文档建模
046 | 大型搜索框架宏观视角:发展、特点及趋势
047 | 多轮打分系统概述
048 | 搜索索引及其相关技术概述
049 | PageRank算法的核心思想是什么?
050 | 经典图算法之HITS
051 | 社区检测算法之“模块最大化 ”
052 | 机器学习排序算法经典模型:RankSVM
053 | 机器学习排序算法经典模型:GBDT
054 | 机器学习排序算法经典模型:LambdaMART
055 | 基于深度学习的搜索算法:深度结构化语义模型
056 | 基于深度学习的搜索算法:卷积结构下的隐含语义模型
057 | 基于深度学习的搜索算法:局部和分布表征下的搜索模型
复盘 1 | 搜索核心技术模块
推荐系统核心技术 (22讲)
058 | 简单推荐模型之一:基于流行度的推荐模型
059 | 简单推荐模型之二:基于相似信息的推荐模型
060 | 简单推荐模型之三:基于内容信息的推荐模型
061 | 基于隐变量的模型之一:矩阵分解
062 | 基于隐变量的模型之二:基于回归的矩阵分解
063 | 基于隐变量的模型之三:分解机
064 | 高级推荐模型之一:张量分解模型
065 | 高级推荐模型之二:协同矩阵分解
066 | 高级推荐模型之三:优化复杂目标函数
067 | 推荐的Exploit和Explore算法之一:EE算法综述
068 | 推荐的Exploit和Explore算法之二:UCB算法
069 | 推荐的Exploit和Explore算法之三:汤普森采样算法
070 | 推荐系统评测之一:传统线下评测
071 | 推荐系统评测之二:线上评测
072 | 推荐系统评测之三:无偏差估计
073 | 现代推荐架构剖析之一:基于线下离线计算的推荐架构
074 | 现代推荐架构剖析之二:基于多层搜索架构的推荐系统
075 | 现代推荐架构剖析之三:复杂现代推荐架构漫谈
076 | 基于深度学习的推荐模型之一:受限波兹曼机
077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统
078 | 基于深度学习的推荐模型之三:利用深度学习来扩展推荐系统
复盘 2 | 推荐系统核心技术模块
广告系统核心技术 (18讲)
079 | 广告系统概述
080 | 广告系统架构
081 | 广告回馈预估综述
082 | Google的点击率系统模型
083 | Facebook的广告点击率预估模型
084 | 雅虎的广告点击率预估模型
085 | LinkedIn的广告点击率预估模型
086 | Twitter的广告点击率预估模型
087 | 阿里巴巴的广告点击率预估模型
088 | 什么是“基于第二价位的广告竞拍”?
089 | 广告的竞价策略是怎样的?
090 | 如何优化广告的竞价策略?
091 | 如何控制广告预算?
092 | 如何设置广告竞价的底价?
093 | 聊一聊“程序化直接购买”和“广告期货”
094 | 归因模型:如何来衡量广告的有效性
095 | 广告投放如何选择受众?如何扩展受众群?
096 | 如何利用机器学习技术来检测广告欺诈?
自然语言处理及文本处理核心技术 (0讲)
该章节暂未更新内容,敬请期待
计算机视觉核心技术 (0讲)
该章节暂未更新内容,敬请期待
数据科学家与数据科学团队养成 (0讲)
该章节暂未更新内容,敬请期待
热点话题讨论 (0讲)
该章节暂未更新内容,敬请期待
结束语 (0讲)
该章节暂未更新内容,敬请期待
AI技术内参
登录|注册

102 | 基础文本分析模型之三:EM算法

洪亮劼 2018-04-25
周一我们分享的模型是“概率隐语义分析”(Probabilistic Latent Semantic Indexing),或者简称为 PLSA,这类模型有效地弥补了隐语义分析的不足,在 LDA 兴起之前,成为了有力的文本分析工具。
不管是 PLSA,还是 LDA,其模型的训练过程都直接或者间接地依赖一个算法,这个算法叫作“期望最大化(Expectation Maximization),或简称为 EM 算法。实际上,EM 算法是针对隐参数模型(Latent Variable Model)最直接有效的训练方法之一。既然这些模型都需要 EM 算法,我们今天就来谈一谈这个算法的一些核心思想。

EM 和 MLE 的关系

EM 算法深深根植于一种更加传统的统计参数方法:最大似然估计(Maximum Likelihood Estimation),有时候简称为 MLE绝大多数的机器学习都可以表达成为某种概率模型的 MLE 求解过程
具体来说,MLE 是这样构造的。首先,我们通过概率模型写出当前数据的“似然表达”。所谓的“似然”表达,其实也就是在当前模型的参数值的情况下,看整个数据出现的可能性有多少。可能性越低,表明参数越无法解释当前的数据。反之,如果可能性非常高,则表明参数可以比较准确地解释当前的数据。因此,MLE 的思想其实就是找到一组参数的取值,使其可以最好地解释现在的数据
针对某一个模型写出这个 MLE 以后,就是一个具体的式子,然后看我们能否找到这个式子最大值下的参数取值。这个时候,整个问题往往就已经变成了一个优化问题。从优化的角度来说,那就是针对参数求导,然后尝试把整个式子置零,从而求出在这个时候的参数值。
对绝大多数相对比较简单的模型来说,我们都可以根据这个流程求出参数的取值。比如,我们熟悉的利用高斯分布来对数据进行建模,其实就可以通过 MLE 的形式,写出用高斯建模的似然表达式,然后通过求解最优函数解的方式得到最佳的参数表达。而正好,这个最优的参数就是样本的均值和样本的方差。
然而,并不是所有的 MLE 表达都能够得到一个“解析解”(Closed Form Solution),有不少的模型甚至无法优化 MLE 的表达式,那么这个时候,我们就需要一个新的工具来求解 MLE。
EM 算法的提出就是为了简化那些求解相对比较困难模型的 MLE 解。
有一点需要说明的是,EM 算法并不能直接求到 MLE,而只能提供一种近似。多数无法直接求解的 MLE 问题都属于非凸(Non-Convex)问题。因此,EM 能够提供的仅仅是一个局部的最优解,而不是全局的最优解

EM 算法的核心思想

理解了 EM 和 MLE 的关系后,我们来看一看 EM 的一些核心思想。因为 EM 算法是技术性比较强的算法,我建议你一定要亲自去推演公式,从而能够真正理解算法的精髓。我们在这里主要提供一种大体的思路。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《AI技术内参》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(3)

  • 马勇(Daniel)
    最好有公式
    2018-10-05
    1
  • 林彦
    EM算法是不是有收敛速度慢,每一步的计算比较复杂的问题?
    2018-04-27
  • 罗马工匠
    还是有公式好理解一点。另外问题的答案能否放评论区呢?em算法除了局部最优,还有其他问题么?
    2018-04-25
收起评论
3
返回
顶部