AI技术内参
洪亮劼
Etsy数据科学主管,前雅虎研究院资深科学家
立即订阅
8412 人已学习
课程目录
已完结 166 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 (1讲)
开篇词 | 你的360度人工智能信息助理
免费
人工智能国际顶级会议 (15讲)
001 | 聊聊2017年KDD大会的时间检验奖
002 | 精读2017年KDD最佳研究论文
003 | 精读2017年KDD最佳应用数据科学论文
004 | 精读2017年EMNLP最佳长论文之一
005 | 精读2017年EMNLP最佳长论文之二
006 | 精读2017年EMNLP最佳短论文
007 | 精读2017年ICCV最佳研究论文
008 | 精读2017年ICCV最佳学生论文
009 | 如何将“深度强化学习”应用到视觉问答系统?
010 | 精读2017年NIPS最佳研究论文之一:如何解决非凸优化问题?
011 | 精读2017年NIPS最佳研究论文之二:KSD测试如何检验两个分布的异同?
012 | 精读2017年NIPS最佳研究论文之三:如何解决非完美信息博弈问题?
013 | WSDM 2018论文精读:看谷歌团队如何做位置偏差估计
014 | WSDM 2018论文精读:看京东团队如何挖掘商品的替代信息和互补信息
015 | WSDM 2018论文精读:深度学习模型中如何使用上下文信息?
搜索核心技术 (28讲)
031 | 经典搜索核心算法:TF-IDF及其变种
032 | 经典搜索核心算法:BM25及其变种(内附全年目录)
033 | 经典搜索核心算法:语言模型及其变种
034 | 机器学习排序算法:单点法排序学习
035 | 机器学习排序算法:配对法排序学习
036 | 机器学习排序算法:列表法排序学习
037 | “查询关键字理解”三部曲之分类
038 | “查询关键字理解”三部曲之解析
039 | “查询关键字理解”三部曲之扩展
040 | 搜索系统评测,有哪些基础指标?
041 | 搜索系统评测,有哪些高级指标?
042 | 如何评测搜索系统的在线表现?
043 | 文档理解第一步:文档分类
044 | 文档理解的关键步骤:文档聚类
045 | 文档理解的重要特例:多模文档建模
046 | 大型搜索框架宏观视角:发展、特点及趋势
047 | 多轮打分系统概述
048 | 搜索索引及其相关技术概述
049 | PageRank算法的核心思想是什么?
050 | 经典图算法之HITS
051 | 社区检测算法之“模块最大化 ”
052 | 机器学习排序算法经典模型:RankSVM
053 | 机器学习排序算法经典模型:GBDT
054 | 机器学习排序算法经典模型:LambdaMART
055 | 基于深度学习的搜索算法:深度结构化语义模型
056 | 基于深度学习的搜索算法:卷积结构下的隐含语义模型
057 | 基于深度学习的搜索算法:局部和分布表征下的搜索模型
复盘 1 | 搜索核心技术模块
推荐系统核心技术 (22讲)
058 | 简单推荐模型之一:基于流行度的推荐模型
059 | 简单推荐模型之二:基于相似信息的推荐模型
060 | 简单推荐模型之三:基于内容信息的推荐模型
061 | 基于隐变量的模型之一:矩阵分解
062 | 基于隐变量的模型之二:基于回归的矩阵分解
063 | 基于隐变量的模型之三:分解机
064 | 高级推荐模型之一:张量分解模型
065 | 高级推荐模型之二:协同矩阵分解
066 | 高级推荐模型之三:优化复杂目标函数
067 | 推荐的Exploit和Explore算法之一:EE算法综述
068 | 推荐的Exploit和Explore算法之二:UCB算法
069 | 推荐的Exploit和Explore算法之三:汤普森采样算法
070 | 推荐系统评测之一:传统线下评测
071 | 推荐系统评测之二:线上评测
072 | 推荐系统评测之三:无偏差估计
073 | 现代推荐架构剖析之一:基于线下离线计算的推荐架构
074 | 现代推荐架构剖析之二:基于多层搜索架构的推荐系统
075 | 现代推荐架构剖析之三:复杂现代推荐架构漫谈
076 | 基于深度学习的推荐模型之一:受限波兹曼机
077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统
078 | 基于深度学习的推荐模型之三:利用深度学习来扩展推荐系统
复盘 2 | 推荐系统核心技术模块
广告系统核心技术 (0讲)
该章节暂未更新内容,敬请期待
自然语言处理及文本处理核心技术 (17讲)
097 | LDA模型的前世今生
098 | LDA变种模型知多少
099 | 针对大规模数据,如何优化LDA算法?
100 | 基础文本分析模型之一:隐语义分析
101 | 基础文本分析模型之二:概率隐语义分析
102 | 基础文本分析模型之三:EM算法
103 | 为什么需要Word2Vec算法?
104 | Word2Vec算法有哪些扩展模型?
105 | Word2Vec算法有哪些应用?
106 | 序列建模的深度学习利器:RNN基础架构
107 | 基于门机制的RNN架构:LSTM与GRU
108 | RNN在自然语言处理中有哪些应用场景?
109 | 对话系统之经典的对话模型
110 | 任务型对话系统有哪些技术要点?
111 | 聊天机器人有哪些核心技术要点?
112 | 什么是文档情感分类?
113 | 如何来提取情感“实体”和“方面”呢?
计算机视觉核心技术 (0讲)
该章节暂未更新内容,敬请期待
数据科学家与数据科学团队养成 (15讲)
127 | 数据科学家基础能力之概率统计
128 | 数据科学家基础能力之机器学习
129 | 数据科学家基础能力之系统
130 | 数据科学家高阶能力之分析产品
131 | 数据科学家高阶能力之评估产品
132 | 数据科学家高阶能力之如何系统提升产品性能
133 | 职场话题:当数据科学家遇见产品团队
134 | 职场话题:数据科学家应聘要具备哪些能力?
135 | 职场话题:聊聊数据科学家的职场规划
136 | 如何组建一个数据科学团队?
137 | 数据科学团队养成:电话面试指南
138 | 数据科学团队养成:Onsite面试面面观
139 | 成为“香饽饽”的数据科学家,如何衡量他们的工作呢?
140 | 人工智能领域知识体系更新周期只有5~6年,数据科学家如何培养?
141 | 数据科学家团队组织架构:水平还是垂直,这是个问题
热点话题讨论 (2讲)
151 | 精读AlphaGo Zero论文
152 | 2017人工智能技术发展盘点
结束语 (0讲)
该章节暂未更新内容,敬请期待
AI技术内参
登录|注册

140 | 人工智能领域知识体系更新周期只有5~6年,数据科学家如何培养?

洪亮劼 2018-02-12

在上一期的分享里,我们聊了数据科学家团队管理的一个重要步骤,那就是如何来衡量数据科学家或者人工智能工程师在团队中的业绩,我们重点讲了如何看待数据科学家团队的价值和数据科学家评定的一些误区。

今天,我们来聊另一个数据科学家团队的高级话题,那就是数据科学家的培养的问题。

为什么要培养数据科学家

为什么要培养数据科学家?这个问题看上似乎是显而易见的,但实际上,如果不了解数据科学家或者人工智能团队的一个重要性质,你很可能无法很好地运营这样一个团队。究竟是什么性质这么重要呢?那就是数据科学家或者人工智能工程师有强烈的持续学习和不断更新自我的需要,这是数据科学家培养的一个非常重要的理念。

那么,数据科学家为什么需要不断学习?简单来说,是因为数据科学家所需要的技能和知识处在一个快速变化的环境中。如果数据科学家不能对这些快速变化的技能和知识加以学习,就很可能被迅速淘汰。

我们这里所说的技能有知识性的技能也有实际的工具性质的技能

从知识性的来看,机器学习和人工智能技术每隔一段时间就会有一些重要的发展,了解和掌握这些更新的技术需要一定的门槛。因此,持续学习是为了能够迈过这些门槛。从过去的经验来看,每一次这样的重要发展所带来的新门槛都不可避免地让一些工程师和数据科学家落伍。

比如,在过去不到 20 年的时间里,机器学习就经历了“支持向量机”(Support Vector Machine)、“概率图模型”(Probabilistic Graphical Model)以及“深度学习”(Deep Learning)这三股大的思潮。也就是平均 5~6 年,数据科学家和人工智能工程师就需要面对一些完全不同的建模思想和工具。更不要说,在这些大的思潮之下,每年出现的新模型也是层数不穷。这还没有提及应用的领域,比如推荐系统、搜索、广告系统、计算机视觉、自然语言处理等等。如果不能在这些领域知识的快速变化中取得主动,很可能就无法胜任未来的工作。

在实际工具技能层面则更是日新月异。比如近日如火如荼的深度学习框架 TensorFlow 仅有 3 年多的历史,五六年前还根本就不存在。而如今借助机器学习迅速崛起的编程语言 Python 在五六年前也没有近日的火爆。而在支持向量机年代非常受欢迎的 LibSVM 和 SVMLight 工具,可能今天已经很少听到。知识框架的变化相比,工具技能层面的变化更加琐碎,更加细节,这也为人工智能科学家提出了更高的挑战。

那么,在知识结构和工具技能都快速变化的情况下,团队的负责人就需要针对这样的特点进行有远见的管理安排。

第一,需要为学习这些技能和知识提供时间。任何数据科学家现有的知识体系都不能保证永不过时。事实上,就像我们刚才提到的,现在每 5~6 年就有一个比较大的知识体系更新,这个更新速度在未来还有可能会更快。那么,花费了非常大的代价招聘来的整个团队就有可能面临着短时间内过时的危机,所以,要能够利用平时的时间,把持续学习的内容安排进团队的日常运作中,可以有效降低团队遭遇知识鸿沟(Gap)的风险。

© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《AI技术内参》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言

由作者筛选后的优质留言将会公开显示,欢迎踊跃留言。
收起评论
返回
顶部