AI技术内参
洪亮劼
Etsy数据科学主管,前雅虎研究院资深科学家
立即订阅
8829 人已学习
课程目录
已完结 166 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 (1讲)
开篇词 | 你的360度人工智能信息助理
免费
人工智能国际顶级会议 (31讲)
001 | 聊聊2017年KDD大会的时间检验奖
002 | 精读2017年KDD最佳研究论文
003 | 精读2017年KDD最佳应用数据科学论文
004 | 精读2017年EMNLP最佳长论文之一
005 | 精读2017年EMNLP最佳长论文之二
006 | 精读2017年EMNLP最佳短论文
007 | 精读2017年ICCV最佳研究论文
008 | 精读2017年ICCV最佳学生论文
009 | 如何将“深度强化学习”应用到视觉问答系统?
010 | 精读2017年NIPS最佳研究论文之一:如何解决非凸优化问题?
011 | 精读2017年NIPS最佳研究论文之二:KSD测试如何检验两个分布的异同?
012 | 精读2017年NIPS最佳研究论文之三:如何解决非完美信息博弈问题?
013 | WSDM 2018论文精读:看谷歌团队如何做位置偏差估计
014 | WSDM 2018论文精读:看京东团队如何挖掘商品的替代信息和互补信息
015 | WSDM 2018论文精读:深度学习模型中如何使用上下文信息?
016 | The Web 2018论文精读:如何对商品的图片美感进行建模?
017 | The Web 2018论文精读:如何改进经典的推荐算法BPR?
018 | The Web 2018论文精读:如何从文本中提取高元关系?
019 | SIGIR 2018论文精读:偏差和“流行度”之间的关系
020 | SIGIR 2018论文精读:如何利用对抗学习来增强排序模型的普适性?
021 | SIGIR 2018论文精读:如何对搜索页面上的点击行为进行序列建模?
022 | CVPR 2018论文精读:如何研究计算机视觉任务之间的关系?
023 | CVPR 2018论文精读:如何从整体上对人体进行三维建模?
024 | CVPR 2018论文精读:如何解决排序学习计算复杂度高这个问题?
025 | ICML 2018论文精读:模型经得起对抗样本的攻击?这或许只是个错觉
026 | ICML 2018论文精读:聊一聊机器学习算法的“公平性”问题
027 | ICML 2018论文精读:优化目标函数的时候,有可能放大了“不公平”?
028 | ACL 2018论文精读:问答系统场景下,如何提出好问题?
029 | ACL 2018论文精读:什么是对话中的前提触发?如何检测?
030 | ACL 2018论文精读:什么是“端到端”的语义哈希?
复盘 7 | 一起来读人工智能国际顶级会议论文
搜索核心技术 (28讲)
031 | 经典搜索核心算法:TF-IDF及其变种
032 | 经典搜索核心算法:BM25及其变种(内附全年目录)
033 | 经典搜索核心算法:语言模型及其变种
034 | 机器学习排序算法:单点法排序学习
035 | 机器学习排序算法:配对法排序学习
036 | 机器学习排序算法:列表法排序学习
037 | “查询关键字理解”三部曲之分类
038 | “查询关键字理解”三部曲之解析
039 | “查询关键字理解”三部曲之扩展
040 | 搜索系统评测,有哪些基础指标?
041 | 搜索系统评测,有哪些高级指标?
042 | 如何评测搜索系统的在线表现?
043 | 文档理解第一步:文档分类
044 | 文档理解的关键步骤:文档聚类
045 | 文档理解的重要特例:多模文档建模
046 | 大型搜索框架宏观视角:发展、特点及趋势
047 | 多轮打分系统概述
048 | 搜索索引及其相关技术概述
049 | PageRank算法的核心思想是什么?
050 | 经典图算法之HITS
051 | 社区检测算法之“模块最大化 ”
052 | 机器学习排序算法经典模型:RankSVM
053 | 机器学习排序算法经典模型:GBDT
054 | 机器学习排序算法经典模型:LambdaMART
055 | 基于深度学习的搜索算法:深度结构化语义模型
056 | 基于深度学习的搜索算法:卷积结构下的隐含语义模型
057 | 基于深度学习的搜索算法:局部和分布表征下的搜索模型
复盘 1 | 搜索核心技术模块
推荐系统核心技术 (22讲)
058 | 简单推荐模型之一:基于流行度的推荐模型
059 | 简单推荐模型之二:基于相似信息的推荐模型
060 | 简单推荐模型之三:基于内容信息的推荐模型
061 | 基于隐变量的模型之一:矩阵分解
062 | 基于隐变量的模型之二:基于回归的矩阵分解
063 | 基于隐变量的模型之三:分解机
064 | 高级推荐模型之一:张量分解模型
065 | 高级推荐模型之二:协同矩阵分解
066 | 高级推荐模型之三:优化复杂目标函数
067 | 推荐的Exploit和Explore算法之一:EE算法综述
068 | 推荐的Exploit和Explore算法之二:UCB算法
069 | 推荐的Exploit和Explore算法之三:汤普森采样算法
070 | 推荐系统评测之一:传统线下评测
071 | 推荐系统评测之二:线上评测
072 | 推荐系统评测之三:无偏差估计
073 | 现代推荐架构剖析之一:基于线下离线计算的推荐架构
074 | 现代推荐架构剖析之二:基于多层搜索架构的推荐系统
075 | 现代推荐架构剖析之三:复杂现代推荐架构漫谈
076 | 基于深度学习的推荐模型之一:受限波兹曼机
077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统
078 | 基于深度学习的推荐模型之三:利用深度学习来扩展推荐系统
复盘 2 | 推荐系统核心技术模块
广告系统核心技术 (18讲)
079 | 广告系统概述
080 | 广告系统架构
081 | 广告回馈预估综述
082 | Google的点击率系统模型
083 | Facebook的广告点击率预估模型
084 | 雅虎的广告点击率预估模型
085 | LinkedIn的广告点击率预估模型
086 | Twitter的广告点击率预估模型
087 | 阿里巴巴的广告点击率预估模型
088 | 什么是“基于第二价位的广告竞拍”?
089 | 广告的竞价策略是怎样的?
090 | 如何优化广告的竞价策略?
091 | 如何控制广告预算?
092 | 如何设置广告竞价的底价?
093 | 聊一聊“程序化直接购买”和“广告期货”
094 | 归因模型:如何来衡量广告的有效性
095 | 广告投放如何选择受众?如何扩展受众群?
096 | 如何利用机器学习技术来检测广告欺诈?
自然语言处理及文本处理核心技术 (0讲)
该章节暂未更新内容,敬请期待
计算机视觉核心技术 (0讲)
该章节暂未更新内容,敬请期待
数据科学家与数据科学团队养成 (0讲)
该章节暂未更新内容,敬请期待
热点话题讨论 (0讲)
该章节暂未更新内容,敬请期待
结束语 (0讲)
该章节暂未更新内容,敬请期待
AI技术内参
登录|注册

118 | 基于深度学习的计算机视觉技术(一):深度神经网络入门

洪亮劼 2018-08-31
在最近几年的人工智能发展中,深度学习技术成为了一个强劲的推动力。对于计算机视觉来讲,深度学习在过去几年重新改写了这个领域的核心方法论。时至今日,深度学习已经深入到了计算机视觉技术的方方面面,成为解决各类视觉问题的有力工具。
从今天开始,我们将介绍一系列以深度学习为背景的计算机视觉技术。那么在这个环节的第一篇分享中,我们首先来了解一下什么是深度学习。

为什么是深度学习

在了解一些深度学习技术细节之前,我们首先要来看一下为什么需要深度学习技术。
初学者经常会有一个误区,那就是认为和“深度学习”相对的就是“浅层学习”(Shallow Learning)。这种看法也对,也不对。
“对”的地方在于“深度学习”的确强调从数据或者说是特征(Feature)中构造多层或深度的变换,从而能够得到非线性的表征(Representation)。显然,这种效果是线性模型所达不到的。
“不对”的地方是,在所谓的“深度学习”,或者准确地讲是深度神经网络技术发展之前,就已经有了很多构造复杂非线性表征的尝试和技术。这些技术在机器学习和人工智能的发展中都起到了举足轻重的作用。
说到这里,我们就要从线性模型聊起了。从线性模型发展到非线性模型,这一步貌似理所当然,但其实这里面有一个非常重要的思路,那就是线性模型并不是不能处理数据中的非线性关系,这一点很容易被忽视。很多时候,我们其实是可以构造非线性的特征,然后利用线性模型来把所有的非线性特征给串联起来。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《AI技术内参》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(6)

  • 寻找自我
    最大的劣势应该是复杂且不可解释
    2018-08-31
    5
  • DUO2.0
    对于数据量的要求很大
    2019-09-27
    1
  • 吴曦
    参数太多,计算复杂度高,容易过拟合。
    2019-01-20
    1
  • Alice
    机器学习早期非线性模型:决策树 ,基于决策树的其他tree models;概率图模型,最大的缺点是算法没有普适性。

    深度学习技术慢慢成了非线性模型的主流,特点:1自动挖掘数据间的关系;2所有模型共同用一个数学框架

    深度神经网络是深度学习技术最简单最基础的一个模型,特点:有足够多的内部隐含变量(就是有足够多的参数?)可以表示出任何复杂的函数关系;计算框架具有普适性。


    在计算机视觉这样的领域里,利用深度神经网络来挖掘特征基本上已经完全代替了手动的特征挖掘
    2019-11-29
  • DUO2.0
    模型的architecture很难调整
    2019-09-27
  • mortimer
    我认为应该是"结果"与常识存在更大概率的"不符",因此在应用上相比"传统方法"需要更多产品化相关的工作
    2018-10-16
收起评论
6
返回
顶部