AI 技术内参
洪亮劼
Etsy 数据科学主管,前雅虎研究院资深科学家
33455 人已学习
新⼈⾸单¥98
登录后,你可以任选6讲全文学习
课程目录
已完结/共 166 讲
开篇词 (1讲)
人工智能国际顶级会议 (31讲)
搜索核心技术 (28讲)
推荐系统核心技术 (22讲)
数据科学家与数据科学团队养成 (25讲)
AI 技术内参
15
15
1.0x
00:00/00:00
登录|注册

077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统

对用户和物品的隐向量随时间变化进行建模
使用LSTM模型
对会话进行建模
使用GRU模型
Recurrent Recommender Networks
Session-based recommendations with recurrent neural networks
解决传统方法无法解决的时序信息需求
利用张量分解
在现有模型中对时间信息进行建模
传统的“时序模型”
时序信息对性能提升的重要性
用户对电影的喜爱程度随时间变化
忽略评分在时间上的发展
未内置时间概念
解决传统推荐模型中难以对时序信息进行建模的问题
未发挥深度学习模型的优势
早期深度学习模型
推荐系统中的其他时序信息的应用
论文中RNN的应用案例
RNN对推荐系统中的时序信息进行建模的重要性
论文介绍
RNN的应用
时序模型的选择
时序信息的重要性
传统推荐模型的不足
递归神经网络(RNN)
受限波兹曼机(RBM)
思考题
总结
基于RNN的推荐模型
时序信息建模
深度学习模型
聊一聊基于RNN的推荐系统

该思维导图由 AI 生成,仅供参考

周一我们看了一篇经典的文章,那就是尝试使用受限波兹曼机(RBM)来对推荐系统建模。这应该是最早把深度学习应用到推荐建模的典范。当然,RBM 虽然算是相对比较早的深度学习模型,但其本质上并没有很多后来提出的深度模型的特质,也没有真正发挥出深度学习模型的特有优势。
今天,我们结合几篇论文来看一类深度学习模型,那就是“递归神经网络”(Recurrent Neural Network),简称 RNN,在推荐系统中的应用。这类模型可以解决传统推荐模型中难以对时序信息进行建模的问题,扩宽了推荐系统的应用边界。

时序信息建模

要想说清楚 RNN 对于推荐系统的贡献,我们首先要来看一看为什么需要对时序信息进行建模。
在我们前面介绍的诸多推荐模型中,不管是矩阵分解,还是简单的基于流行度的推荐模型,或是其他更加复杂的张量分解等模型,其实都没有内置“时间”这个概念。
比方说,我们通过矩阵分解来对用户和物品的评分进行建模。在这个建模的场景里,用户物品评分矩阵是针对所有数据的,不管是用户昨天对某个物品进行评分还是今天,甚至是一年以前,所有数据都是在唯一一个矩阵里面加以表示。这么做的好处是,极大地简化了真实情况,不好的地方则是完全忽略了所有评分在时间上的发展。
其实早在 Netflix 大赛中,一些学者就在 Netflix 公布的数据集上发现,用户对于电影的喜爱程度,或者说评分数值,有非常明显的随时间变化而变化的趋势。文末我列的参考文献[1],这篇论文就是充分挖掘了时间信息从而带来了性能上的提升,如果你有兴趣的话,建议读一读这篇文章。
在深度学习模型,特别是 RNN 之前,如果我们希望对时间进行建模,从模型工具的角度上来说,我们都有哪些选择呢?
一种办法是可以尝试使用传统的“时序模型”(Time Series Models)。这一类模型在统计领域已经使用了较长时间,然而最大的问题就是,很多工具很难直接和我们提到的这些推荐模型进行嫁接。另外一个难点是在嫁接之后,模型的训练算法往往会变得异常复杂,这也给模型的普及和使用带来了很多障碍。
另外一种办法,就是尝试在现有的模型里通过特性(Feature)或者其他的方法,来让当前的模型能够对时间信息进行建模。这个思路其实是对矩阵分解进行了修改。这样做的好处就是可以根据自己的需要在某一个模型上进行必要的更改,然而这么做的先天性缺陷就在于提出来的修改往往只能针对某一个模型,而没有办法扩展到其他模型。
第三种做法是可以利用张量分解(Tensor Factorization)。我们直接把时间作为一个新的维度,因此可以对用户在某一个时间段对某个物品的评分进行建模,有一些工作是基于这个假设的。
不过,直接利用张量分解的最大问题是,张量本身并不是时序模型,利用张量对时序信息进行建模仅仅是因为时序信息大多时候可以被表达成为离散的数据,因此张量才在这里有了用武之地。然而,因为张量无法直接对离散时序的两位数据点之间进行约束建模,比如时间点“昨天”和时间点“今天”可能在张量中占据两个不同的数据点,但是张量本身并不能把这两个数据点联系起来。也就是说,张量在“语义”(Semantics)上其实并不支持时序数据。
基于以上这些原因,我们需要有新的工具来对时序信息进行比较直接的建模,同时也能有相对容易的学习算法。
确认放弃笔记?
放弃后所记笔记将不保留。
新功能上线,你的历史笔记已初始化为私密笔记,是否一键批量公开?
批量公开的笔记不会为你同步至部落
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
  • 深入了解
  • 翻译
    • 英语
    • 中文简体
    • 中文繁体
    • 法语
    • 德语
    • 日语
    • 韩语
    • 俄语
    • 西班牙语
    • 阿拉伯语
  • 解释
  • 总结

深度学习模型RNN在推荐系统中的应用是本文的主题。传统推荐模型中缺乏对时序信息的建模,而RNN作为一种强大的时序信息建模工具,被越来越多的学者用来解决这一问题。文章介绍了RNN在推荐系统中的应用,包括基于会话的推荐和递归推荐网络。通过RNN模型,可以更好地对用户行为随时间变化的特点进行建模,从而提高推荐系统的效果。文章还提出了一个思考题,除了会话信息和用户的喜好,推荐系统中还有哪些时序信息的应用。这引发了对推荐系统中时序信息的更深入思考。文章通过介绍RNN在推荐系统中的应用,为读者提供了对时序信息建模的新思路,同时也引发了对推荐系统更广泛时序信息应用的思考。

仅可试看部分内容,如需阅读全部内容,请付费购买文章所属专栏
《AI 技术内参》
新⼈⾸单¥98
立即购买
登录 后留言

全部留言(1)

  • 最新
  • 精选
  • 林彦
    放入购物车,购买,评论,收藏是不是也属于用户的喜好?与客服的联系互动,用户的分享,与其他用户的互动我觉得是时序信息。
    2018-04-13
收起评论
显示
设置
留言
1
收藏
沉浸
阅读
分享
手机端
快捷键
回顶部