AI技术内参
洪亮劼
Etsy数据科学主管,前雅虎研究院资深科学家
立即订阅
8841 人已学习
课程目录
已完结 166 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 (1讲)
开篇词 | 你的360度人工智能信息助理
免费
人工智能国际顶级会议 (31讲)
001 | 聊聊2017年KDD大会的时间检验奖
002 | 精读2017年KDD最佳研究论文
003 | 精读2017年KDD最佳应用数据科学论文
004 | 精读2017年EMNLP最佳长论文之一
005 | 精读2017年EMNLP最佳长论文之二
006 | 精读2017年EMNLP最佳短论文
007 | 精读2017年ICCV最佳研究论文
008 | 精读2017年ICCV最佳学生论文
009 | 如何将“深度强化学习”应用到视觉问答系统?
010 | 精读2017年NIPS最佳研究论文之一:如何解决非凸优化问题?
011 | 精读2017年NIPS最佳研究论文之二:KSD测试如何检验两个分布的异同?
012 | 精读2017年NIPS最佳研究论文之三:如何解决非完美信息博弈问题?
013 | WSDM 2018论文精读:看谷歌团队如何做位置偏差估计
014 | WSDM 2018论文精读:看京东团队如何挖掘商品的替代信息和互补信息
015 | WSDM 2018论文精读:深度学习模型中如何使用上下文信息?
016 | The Web 2018论文精读:如何对商品的图片美感进行建模?
017 | The Web 2018论文精读:如何改进经典的推荐算法BPR?
018 | The Web 2018论文精读:如何从文本中提取高元关系?
019 | SIGIR 2018论文精读:偏差和“流行度”之间的关系
020 | SIGIR 2018论文精读:如何利用对抗学习来增强排序模型的普适性?
021 | SIGIR 2018论文精读:如何对搜索页面上的点击行为进行序列建模?
022 | CVPR 2018论文精读:如何研究计算机视觉任务之间的关系?
023 | CVPR 2018论文精读:如何从整体上对人体进行三维建模?
024 | CVPR 2018论文精读:如何解决排序学习计算复杂度高这个问题?
025 | ICML 2018论文精读:模型经得起对抗样本的攻击?这或许只是个错觉
026 | ICML 2018论文精读:聊一聊机器学习算法的“公平性”问题
027 | ICML 2018论文精读:优化目标函数的时候,有可能放大了“不公平”?
028 | ACL 2018论文精读:问答系统场景下,如何提出好问题?
029 | ACL 2018论文精读:什么是对话中的前提触发?如何检测?
030 | ACL 2018论文精读:什么是“端到端”的语义哈希?
复盘 7 | 一起来读人工智能国际顶级会议论文
搜索核心技术 (28讲)
031 | 经典搜索核心算法:TF-IDF及其变种
032 | 经典搜索核心算法:BM25及其变种(内附全年目录)
033 | 经典搜索核心算法:语言模型及其变种
034 | 机器学习排序算法:单点法排序学习
035 | 机器学习排序算法:配对法排序学习
036 | 机器学习排序算法:列表法排序学习
037 | “查询关键字理解”三部曲之分类
038 | “查询关键字理解”三部曲之解析
039 | “查询关键字理解”三部曲之扩展
040 | 搜索系统评测,有哪些基础指标?
041 | 搜索系统评测,有哪些高级指标?
042 | 如何评测搜索系统的在线表现?
043 | 文档理解第一步:文档分类
044 | 文档理解的关键步骤:文档聚类
045 | 文档理解的重要特例:多模文档建模
046 | 大型搜索框架宏观视角:发展、特点及趋势
047 | 多轮打分系统概述
048 | 搜索索引及其相关技术概述
049 | PageRank算法的核心思想是什么?
050 | 经典图算法之HITS
051 | 社区检测算法之“模块最大化 ”
052 | 机器学习排序算法经典模型:RankSVM
053 | 机器学习排序算法经典模型:GBDT
054 | 机器学习排序算法经典模型:LambdaMART
055 | 基于深度学习的搜索算法:深度结构化语义模型
056 | 基于深度学习的搜索算法:卷积结构下的隐含语义模型
057 | 基于深度学习的搜索算法:局部和分布表征下的搜索模型
复盘 1 | 搜索核心技术模块
推荐系统核心技术 (22讲)
058 | 简单推荐模型之一:基于流行度的推荐模型
059 | 简单推荐模型之二:基于相似信息的推荐模型
060 | 简单推荐模型之三:基于内容信息的推荐模型
061 | 基于隐变量的模型之一:矩阵分解
062 | 基于隐变量的模型之二:基于回归的矩阵分解
063 | 基于隐变量的模型之三:分解机
064 | 高级推荐模型之一:张量分解模型
065 | 高级推荐模型之二:协同矩阵分解
066 | 高级推荐模型之三:优化复杂目标函数
067 | 推荐的Exploit和Explore算法之一:EE算法综述
068 | 推荐的Exploit和Explore算法之二:UCB算法
069 | 推荐的Exploit和Explore算法之三:汤普森采样算法
070 | 推荐系统评测之一:传统线下评测
071 | 推荐系统评测之二:线上评测
072 | 推荐系统评测之三:无偏差估计
073 | 现代推荐架构剖析之一:基于线下离线计算的推荐架构
074 | 现代推荐架构剖析之二:基于多层搜索架构的推荐系统
075 | 现代推荐架构剖析之三:复杂现代推荐架构漫谈
076 | 基于深度学习的推荐模型之一:受限波兹曼机
077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统
078 | 基于深度学习的推荐模型之三:利用深度学习来扩展推荐系统
复盘 2 | 推荐系统核心技术模块
广告系统核心技术 (18讲)
079 | 广告系统概述
080 | 广告系统架构
081 | 广告回馈预估综述
082 | Google的点击率系统模型
083 | Facebook的广告点击率预估模型
084 | 雅虎的广告点击率预估模型
085 | LinkedIn的广告点击率预估模型
086 | Twitter的广告点击率预估模型
087 | 阿里巴巴的广告点击率预估模型
088 | 什么是“基于第二价位的广告竞拍”?
089 | 广告的竞价策略是怎样的?
090 | 如何优化广告的竞价策略?
091 | 如何控制广告预算?
092 | 如何设置广告竞价的底价?
093 | 聊一聊“程序化直接购买”和“广告期货”
094 | 归因模型:如何来衡量广告的有效性
095 | 广告投放如何选择受众?如何扩展受众群?
096 | 如何利用机器学习技术来检测广告欺诈?
自然语言处理及文本处理核心技术 (0讲)
该章节暂未更新内容,敬请期待
计算机视觉核心技术 (0讲)
该章节暂未更新内容,敬请期待
数据科学家与数据科学团队养成 (0讲)
该章节暂未更新内容,敬请期待
热点话题讨论 (0讲)
该章节暂未更新内容,敬请期待
结束语 (0讲)
该章节暂未更新内容,敬请期待
AI技术内参
登录|注册

077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统

洪亮劼 2018-04-11
周一我们看了一篇经典的文章,那就是尝试使用受限波兹曼机(RBM)来对推荐系统建模。这应该是最早把深度学习应用到推荐建模的典范。当然,RBM 虽然算是相对比较早的深度学习模型,但其本质上并没有很多后来提出的深度模型的特质,也没有真正发挥出深度学习模型的特有优势。
今天,我们结合几篇论文来看一类深度学习模型,那就是“递归神经网络”(Recurrent Neural Network),简称 RNN,在推荐系统中的应用。这类模型可以解决传统推荐模型中难以对时序信息进行建模的问题,扩宽了推荐系统的应用边界。

时序信息建模

要想说清楚 RNN 对于推荐系统的贡献,我们首先要来看一看为什么需要对时序信息进行建模。
在我们前面介绍的诸多推荐模型中,不管是矩阵分解,还是简单的基于流行度的推荐模型,或是其他更加复杂的张量分解等模型,其实都没有内置“时间”这个概念。
比方说,我们通过矩阵分解来对用户和物品的评分进行建模。在这个建模的场景里,用户物品评分矩阵是针对所有数据的,不管是用户昨天对某个物品进行评分还是今天,甚至是一年以前,所有数据都是在唯一一个矩阵里面加以表示。这么做的好处是,极大地简化了真实情况,不好的地方则是完全忽略了所有评分在时间上的发展。
其实早在 Netflix 大赛中,一些学者就在 Netflix 公布的数据集上发现,用户对于电影的喜爱程度,或者说评分数值,有非常明显的随时间变化而变化的趋势。文末我列的参考文献 [1],这篇论文就是充分挖掘了时间信息从而带来了性能上的提升,如果你有兴趣的话,建议读一读这篇文章。
在深度学习模型,特别是 RNN 之前,如果我们希望对时间进行建模,从模型工具的角度上来说,我们都有哪些选择呢?
一种办法是可以尝试使用传统的“时序模型”(Time Series Models)。这一类模型在统计领域已经使用了较长时间,然而最大的问题就是,很多工具很难直接和我们提到的这些推荐模型进行嫁接。另外一个难点是在嫁接之后,模型的训练算法往往会变得异常复杂,这也给模型的普及和使用带来了很多障碍。
另外一种办法,就是尝试在现有的模型里通过特性(Feature)或者其他的方法,来让当前的模型能够对时间信息进行建模。这个思路其实是对矩阵分解进行了修改。这样做的好处就是可以根据自己的需要在某一个模型上进行必要的更改,然而这么做的先天性缺陷就在于提出来的修改往往只能针对某一个模型,而没有办法扩展到其他模型。
第三种做法是可以利用张量分解(Tensor Factorization)。我们直接把时间作为一个新的维度,因此可以对用户在某一个时间段对某个物品的评分进行建模,有一些工作是基于这个假设的。
不过,直接利用张量分解的最大问题是,张量本身并不是时序模型,利用张量对时序信息进行建模仅仅是因为时序信息大多时候可以被表达成为离散的数据,因此张量才在这里有了用武之地。然而,因为张量无法直接对离散时序的两位数据点之间进行约束建模,比如时间点“昨天”和时间点“今天”可能在张量中占据两个不同的数据点,但是张量本身并不能把这两个数据点联系起来。也就是说,张量在“语义”(Semantics)上其实并不支持时序数据。
基于以上这些原因,我们需要有新的工具来对时序信息进行比较直接的建模,同时也能有相对容易的学习算法。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《AI技术内参》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(1)

  • 林彦
    放入购物车,购买,评论,收藏是不是也属于用户的喜好?与客服的联系互动,用户的分享,与其他用户的互动我觉得是时序信息。
    2018-04-13
收起评论
1
返回
顶部