AI 技术内参
洪亮劼
Etsy 数据科学主管,前雅虎研究院资深科学家
32838 人已学习
新⼈⾸单¥98
登录后,你可以任选6讲全文学习
课程目录
已完结/共 166 讲
开篇词 (1讲)
人工智能国际顶级会议 (31讲)
搜索核心技术 (28讲)
推荐系统核心技术 (22讲)
数据科学家与数据科学团队养成 (25讲)
AI 技术内参
15
15
1.0x
00:00/00:00
登录|注册

008 | 精读2017年ICCV最佳学生论文

周一我们认真剖析了 ICCV 2017 年的最佳研究论文“Mask R-CNN”。今天我们来分享 ICCV 2017 的最佳学生论文《焦点损失用于密集物体检测》(Focal Loss for Dense Object Detection)。
可以说,这篇文章是我们周一分享的最佳论文的孪生兄弟。首先,这篇论文的作者群也基本是 Facebook 人工智能研究院的班底。其次,这篇文章解决的问题也很类似,也是物体识别和语义分割,只是不解决数据点分割的问题。

作者群信息介绍

除第一作者外,这篇论文的作者都来自 Facebook 的人工智能研究院。
第一作者林仓义(Tsung-Yi Lin),目前在谷歌大脑(Google Brain)团队工作,发表论文的时候在 Facebook 人工智能研究院实习。林仓义在台湾国立大学获得本科学位,在加州大学圣地亚哥分校获得硕士学位,2017 年刚从康奈尔大学博士毕业。博士期间,他师从计算机视觉专家塞尔盖⋅比隆基(Serge Belongie),发表了多篇高质量的计算机视觉论文。
第二作者皮里亚⋅高耶(Priya Goyal)是 Facebook 人工智能研究院的一名研究工程师。在加入 Facebook 之前,皮里亚从印度理工大学获得了学士和硕士学位。
第三作者罗斯⋅吉尔什克(Ross Girshick),第四作者何恺明,还有最后一个作者皮奥特⋅多拉(Piotr Dollár),这三位作者也是周一的最佳研究论文的作者,我们已经介绍过了,你可以回去再了解一下。

论文的主要贡献

我们首先来看一下这篇文章的主要贡献。
刚才我们已经简单地谈到了,这篇文章要解决的问题,就是对输入图像进行物体识别和语义分割这两个任务。对于这个问题有两种主要的思路,这两个思路都在不断地发展。
确认放弃笔记?
放弃后所记笔记将不保留。
新功能上线,你的历史笔记已初始化为私密笔记,是否一键批量公开?
批量公开的笔记不会为你同步至部落
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
  • 深入了解
  • 翻译
    • 英语
    • 中文简体
    • 中文繁体
    • 法语
    • 德语
    • 日语
    • 韩语
    • 俄语
    • 西班牙语
    • 阿拉伯语
  • 解释
  • 总结
仅可试看部分内容,如需阅读全部内容,请付费购买文章所属专栏
《AI 技术内参》
新⼈⾸单¥98
立即购买
登录 后留言

全部留言(1)

  • 最新
  • 精选
  • 林彦
    传统的机器学习针对数据集不平衡可以对比例小的过采样,比例大的欠采样,还有对目标函数根据数据比例进行缩放。
    2
收起评论
显示
设置
留言
1
收藏
沉浸
阅读
分享
手机端
快捷键
回顶部