AI技术内参
洪亮劼
Etsy数据科学主管,前雅虎研究院资深科学家
立即订阅
8829 人已学习
课程目录
已完结 166 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 (1讲)
开篇词 | 你的360度人工智能信息助理
免费
人工智能国际顶级会议 (31讲)
001 | 聊聊2017年KDD大会的时间检验奖
002 | 精读2017年KDD最佳研究论文
003 | 精读2017年KDD最佳应用数据科学论文
004 | 精读2017年EMNLP最佳长论文之一
005 | 精读2017年EMNLP最佳长论文之二
006 | 精读2017年EMNLP最佳短论文
007 | 精读2017年ICCV最佳研究论文
008 | 精读2017年ICCV最佳学生论文
009 | 如何将“深度强化学习”应用到视觉问答系统?
010 | 精读2017年NIPS最佳研究论文之一:如何解决非凸优化问题?
011 | 精读2017年NIPS最佳研究论文之二:KSD测试如何检验两个分布的异同?
012 | 精读2017年NIPS最佳研究论文之三:如何解决非完美信息博弈问题?
013 | WSDM 2018论文精读:看谷歌团队如何做位置偏差估计
014 | WSDM 2018论文精读:看京东团队如何挖掘商品的替代信息和互补信息
015 | WSDM 2018论文精读:深度学习模型中如何使用上下文信息?
016 | The Web 2018论文精读:如何对商品的图片美感进行建模?
017 | The Web 2018论文精读:如何改进经典的推荐算法BPR?
018 | The Web 2018论文精读:如何从文本中提取高元关系?
019 | SIGIR 2018论文精读:偏差和“流行度”之间的关系
020 | SIGIR 2018论文精读:如何利用对抗学习来增强排序模型的普适性?
021 | SIGIR 2018论文精读:如何对搜索页面上的点击行为进行序列建模?
022 | CVPR 2018论文精读:如何研究计算机视觉任务之间的关系?
023 | CVPR 2018论文精读:如何从整体上对人体进行三维建模?
024 | CVPR 2018论文精读:如何解决排序学习计算复杂度高这个问题?
025 | ICML 2018论文精读:模型经得起对抗样本的攻击?这或许只是个错觉
026 | ICML 2018论文精读:聊一聊机器学习算法的“公平性”问题
027 | ICML 2018论文精读:优化目标函数的时候,有可能放大了“不公平”?
028 | ACL 2018论文精读:问答系统场景下,如何提出好问题?
029 | ACL 2018论文精读:什么是对话中的前提触发?如何检测?
030 | ACL 2018论文精读:什么是“端到端”的语义哈希?
复盘 7 | 一起来读人工智能国际顶级会议论文
搜索核心技术 (28讲)
031 | 经典搜索核心算法:TF-IDF及其变种
032 | 经典搜索核心算法:BM25及其变种(内附全年目录)
033 | 经典搜索核心算法:语言模型及其变种
034 | 机器学习排序算法:单点法排序学习
035 | 机器学习排序算法:配对法排序学习
036 | 机器学习排序算法:列表法排序学习
037 | “查询关键字理解”三部曲之分类
038 | “查询关键字理解”三部曲之解析
039 | “查询关键字理解”三部曲之扩展
040 | 搜索系统评测,有哪些基础指标?
041 | 搜索系统评测,有哪些高级指标?
042 | 如何评测搜索系统的在线表现?
043 | 文档理解第一步:文档分类
044 | 文档理解的关键步骤:文档聚类
045 | 文档理解的重要特例:多模文档建模
046 | 大型搜索框架宏观视角:发展、特点及趋势
047 | 多轮打分系统概述
048 | 搜索索引及其相关技术概述
049 | PageRank算法的核心思想是什么?
050 | 经典图算法之HITS
051 | 社区检测算法之“模块最大化 ”
052 | 机器学习排序算法经典模型:RankSVM
053 | 机器学习排序算法经典模型:GBDT
054 | 机器学习排序算法经典模型:LambdaMART
055 | 基于深度学习的搜索算法:深度结构化语义模型
056 | 基于深度学习的搜索算法:卷积结构下的隐含语义模型
057 | 基于深度学习的搜索算法:局部和分布表征下的搜索模型
复盘 1 | 搜索核心技术模块
推荐系统核心技术 (22讲)
058 | 简单推荐模型之一:基于流行度的推荐模型
059 | 简单推荐模型之二:基于相似信息的推荐模型
060 | 简单推荐模型之三:基于内容信息的推荐模型
061 | 基于隐变量的模型之一:矩阵分解
062 | 基于隐变量的模型之二:基于回归的矩阵分解
063 | 基于隐变量的模型之三:分解机
064 | 高级推荐模型之一:张量分解模型
065 | 高级推荐模型之二:协同矩阵分解
066 | 高级推荐模型之三:优化复杂目标函数
067 | 推荐的Exploit和Explore算法之一:EE算法综述
068 | 推荐的Exploit和Explore算法之二:UCB算法
069 | 推荐的Exploit和Explore算法之三:汤普森采样算法
070 | 推荐系统评测之一:传统线下评测
071 | 推荐系统评测之二:线上评测
072 | 推荐系统评测之三:无偏差估计
073 | 现代推荐架构剖析之一:基于线下离线计算的推荐架构
074 | 现代推荐架构剖析之二:基于多层搜索架构的推荐系统
075 | 现代推荐架构剖析之三:复杂现代推荐架构漫谈
076 | 基于深度学习的推荐模型之一:受限波兹曼机
077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统
078 | 基于深度学习的推荐模型之三:利用深度学习来扩展推荐系统
复盘 2 | 推荐系统核心技术模块
广告系统核心技术 (18讲)
079 | 广告系统概述
080 | 广告系统架构
081 | 广告回馈预估综述
082 | Google的点击率系统模型
083 | Facebook的广告点击率预估模型
084 | 雅虎的广告点击率预估模型
085 | LinkedIn的广告点击率预估模型
086 | Twitter的广告点击率预估模型
087 | 阿里巴巴的广告点击率预估模型
088 | 什么是“基于第二价位的广告竞拍”?
089 | 广告的竞价策略是怎样的?
090 | 如何优化广告的竞价策略?
091 | 如何控制广告预算?
092 | 如何设置广告竞价的底价?
093 | 聊一聊“程序化直接购买”和“广告期货”
094 | 归因模型:如何来衡量广告的有效性
095 | 广告投放如何选择受众?如何扩展受众群?
096 | 如何利用机器学习技术来检测广告欺诈?
自然语言处理及文本处理核心技术 (0讲)
该章节暂未更新内容,敬请期待
计算机视觉核心技术 (0讲)
该章节暂未更新内容,敬请期待
数据科学家与数据科学团队养成 (0讲)
该章节暂未更新内容,敬请期待
热点话题讨论 (0讲)
该章节暂未更新内容,敬请期待
结束语 (0讲)
该章节暂未更新内容,敬请期待
AI技术内参
登录|注册

042 | 如何评测搜索系统的在线表现?

洪亮劼 2017-12-08
我在本周前面的两篇文章中为你讲解了基于“二元相关”和基于“多程度相关”原理的线下评测指标。利用这些指标,研发人员在半个世纪的时间里开发了一代又一代的搜索系统,这些指标和系统也都在不断演化。
虽然我们这周讲过的这些指标都很有指导意义,但大多数指标被提出来的时候都是基于线下的静态数据集,并不是真正去检测用户和系统的互动(虽然后期也有研发人员直接使用这些评测工具用于在线评测,但在使用上就产生了问题)。那有什么样的方法来评测搜索系统的在线表现呢?
为了回答这个问题,我们今天就来探讨一下进行在线评测的几个话题。

在线可控实验

我们先回到整个评测指标的初衷,为什么要进行线下测试呢?
第一个原因是在信息检索系统(也就是最早的搜索系统)的开发时期,还很难做在线可控实验(Controlled Experiments),研发人员还没有开发出值得依赖的手段来判断用户的行为。因此,在那个年代,比较可靠的方法就是调查问卷和后来开发出来的线下静态评测。可以说,这些手段都是真正了解用户行为的一个“代理”(Proxy)。
要进行评测,不管是线下还是线上,另外一个原因就是我们需要某种手段来分辨两个系统的好坏,从而能够不断地通过这种手段来改进系统,做到数据驱动。
那么,能够正确观测两个系统不同的工具,就是“在线可控实验”,有时候又称作“在线实验”,或者也叫作“在线 A/B 实验”。
在线可控实验其实是建立“因果联系”(Causal Relationship)的重要工具,也可以说是唯一完全可靠的工具。这里面的基础是统计的假设检验
具体来说,就是我们针对访问网站或者应用的人群,进行某种划分,一般情况下是平均随机划分,百分之五十的用户进入划定的一个群组,叫作“控制组”(Control Bucket),而另外百分之五十的用户进入另外一个群组,叫作“对照组”(Treatment Bucket)。“控制组”和“对照组”的唯一区别在于所面对的系统。
假设有一个搜索系统,我们想对其中的某个部分进行改进,那么,我们可以保持住其他的部分,让这个希望得到改进的部分成为唯一的“独立变量”(Independent Variable),也就是在整个实验设置中的变量。这样,我们就希望看到,能否通过在线实验以及假设检验的工具,来认定这个“独立变量”是否会带来系统性能上的提高,亦或是降低。
这里面还有一个需要提前确定的,那就是需要评测的指标,特别是用户指标,比如网站的点击率、搜索的数量等等。这些指标我们称之为“依赖变量”(Dependent Variable)。说白了,我们就是希望能够在“独立变量”和“依赖变量”之间通过假设检验建立联系
虽然在概念上很容易理解在线可控实验,但在实际操作中会面临很多挑战。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《AI技术内参》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(1)

  • 韩康
    请问,在使用LTR模型的系统里做A/B实验时,团队里怎么多人同时做A/B实验?
    团队里多个人新增特征重新训练了LTR模型,同时做A/B实验,如果相比于线上基线模型效果都很好,这些特征要全量的话,还要把所有的新增特征重新训练一个新模型,再做A/B实验。
    如果团队很多人同时做LTR优化,如何验证不同的特征并全量?
    2018-04-04
收起评论
1
返回
顶部