AI技术内参
洪亮劼
Etsy数据科学主管,前雅虎研究院资深科学家
立即订阅
8813 人已学习
课程目录
已完结 166 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 (1讲)
开篇词 | 你的360度人工智能信息助理
免费
人工智能国际顶级会议 (31讲)
001 | 聊聊2017年KDD大会的时间检验奖
002 | 精读2017年KDD最佳研究论文
003 | 精读2017年KDD最佳应用数据科学论文
004 | 精读2017年EMNLP最佳长论文之一
005 | 精读2017年EMNLP最佳长论文之二
006 | 精读2017年EMNLP最佳短论文
007 | 精读2017年ICCV最佳研究论文
008 | 精读2017年ICCV最佳学生论文
009 | 如何将“深度强化学习”应用到视觉问答系统?
010 | 精读2017年NIPS最佳研究论文之一:如何解决非凸优化问题?
011 | 精读2017年NIPS最佳研究论文之二:KSD测试如何检验两个分布的异同?
012 | 精读2017年NIPS最佳研究论文之三:如何解决非完美信息博弈问题?
013 | WSDM 2018论文精读:看谷歌团队如何做位置偏差估计
014 | WSDM 2018论文精读:看京东团队如何挖掘商品的替代信息和互补信息
015 | WSDM 2018论文精读:深度学习模型中如何使用上下文信息?
016 | The Web 2018论文精读:如何对商品的图片美感进行建模?
017 | The Web 2018论文精读:如何改进经典的推荐算法BPR?
018 | The Web 2018论文精读:如何从文本中提取高元关系?
019 | SIGIR 2018论文精读:偏差和“流行度”之间的关系
020 | SIGIR 2018论文精读:如何利用对抗学习来增强排序模型的普适性?
021 | SIGIR 2018论文精读:如何对搜索页面上的点击行为进行序列建模?
022 | CVPR 2018论文精读:如何研究计算机视觉任务之间的关系?
023 | CVPR 2018论文精读:如何从整体上对人体进行三维建模?
024 | CVPR 2018论文精读:如何解决排序学习计算复杂度高这个问题?
025 | ICML 2018论文精读:模型经得起对抗样本的攻击?这或许只是个错觉
026 | ICML 2018论文精读:聊一聊机器学习算法的“公平性”问题
027 | ICML 2018论文精读:优化目标函数的时候,有可能放大了“不公平”?
028 | ACL 2018论文精读:问答系统场景下,如何提出好问题?
029 | ACL 2018论文精读:什么是对话中的前提触发?如何检测?
030 | ACL 2018论文精读:什么是“端到端”的语义哈希?
复盘 7 | 一起来读人工智能国际顶级会议论文
搜索核心技术 (28讲)
031 | 经典搜索核心算法:TF-IDF及其变种
032 | 经典搜索核心算法:BM25及其变种(内附全年目录)
033 | 经典搜索核心算法:语言模型及其变种
034 | 机器学习排序算法:单点法排序学习
035 | 机器学习排序算法:配对法排序学习
036 | 机器学习排序算法:列表法排序学习
037 | “查询关键字理解”三部曲之分类
038 | “查询关键字理解”三部曲之解析
039 | “查询关键字理解”三部曲之扩展
040 | 搜索系统评测,有哪些基础指标?
041 | 搜索系统评测,有哪些高级指标?
042 | 如何评测搜索系统的在线表现?
043 | 文档理解第一步:文档分类
044 | 文档理解的关键步骤:文档聚类
045 | 文档理解的重要特例:多模文档建模
046 | 大型搜索框架宏观视角:发展、特点及趋势
047 | 多轮打分系统概述
048 | 搜索索引及其相关技术概述
049 | PageRank算法的核心思想是什么?
050 | 经典图算法之HITS
051 | 社区检测算法之“模块最大化 ”
052 | 机器学习排序算法经典模型:RankSVM
053 | 机器学习排序算法经典模型:GBDT
054 | 机器学习排序算法经典模型:LambdaMART
055 | 基于深度学习的搜索算法:深度结构化语义模型
056 | 基于深度学习的搜索算法:卷积结构下的隐含语义模型
057 | 基于深度学习的搜索算法:局部和分布表征下的搜索模型
复盘 1 | 搜索核心技术模块
推荐系统核心技术 (22讲)
058 | 简单推荐模型之一:基于流行度的推荐模型
059 | 简单推荐模型之二:基于相似信息的推荐模型
060 | 简单推荐模型之三:基于内容信息的推荐模型
061 | 基于隐变量的模型之一:矩阵分解
062 | 基于隐变量的模型之二:基于回归的矩阵分解
063 | 基于隐变量的模型之三:分解机
064 | 高级推荐模型之一:张量分解模型
065 | 高级推荐模型之二:协同矩阵分解
066 | 高级推荐模型之三:优化复杂目标函数
067 | 推荐的Exploit和Explore算法之一:EE算法综述
068 | 推荐的Exploit和Explore算法之二:UCB算法
069 | 推荐的Exploit和Explore算法之三:汤普森采样算法
070 | 推荐系统评测之一:传统线下评测
071 | 推荐系统评测之二:线上评测
072 | 推荐系统评测之三:无偏差估计
073 | 现代推荐架构剖析之一:基于线下离线计算的推荐架构
074 | 现代推荐架构剖析之二:基于多层搜索架构的推荐系统
075 | 现代推荐架构剖析之三:复杂现代推荐架构漫谈
076 | 基于深度学习的推荐模型之一:受限波兹曼机
077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统
078 | 基于深度学习的推荐模型之三:利用深度学习来扩展推荐系统
复盘 2 | 推荐系统核心技术模块
广告系统核心技术 (18讲)
079 | 广告系统概述
080 | 广告系统架构
081 | 广告回馈预估综述
082 | Google的点击率系统模型
083 | Facebook的广告点击率预估模型
084 | 雅虎的广告点击率预估模型
085 | LinkedIn的广告点击率预估模型
086 | Twitter的广告点击率预估模型
087 | 阿里巴巴的广告点击率预估模型
088 | 什么是“基于第二价位的广告竞拍”?
089 | 广告的竞价策略是怎样的?
090 | 如何优化广告的竞价策略?
091 | 如何控制广告预算?
092 | 如何设置广告竞价的底价?
093 | 聊一聊“程序化直接购买”和“广告期货”
094 | 归因模型:如何来衡量广告的有效性
095 | 广告投放如何选择受众?如何扩展受众群?
096 | 如何利用机器学习技术来检测广告欺诈?
自然语言处理及文本处理核心技术 (0讲)
该章节暂未更新内容,敬请期待
计算机视觉核心技术 (0讲)
该章节暂未更新内容,敬请期待
数据科学家与数据科学团队养成 (0讲)
该章节暂未更新内容,敬请期待
热点话题讨论 (0讲)
该章节暂未更新内容,敬请期待
结束语 (0讲)
该章节暂未更新内容,敬请期待
AI技术内参
登录|注册

003 | 精读2017年KDD最佳应用数据科学论文

洪亮劼 2017-11-01
周一我们讲了 2017 年 KDD 最佳研究论文,今天我们继续来聊今年的 KDD 最佳应用数据科学论文。
与研究类论文不同的是,KDD 的应用类学术论文更加强调论文所描述的方法或者系统在实际应用中发挥的作用。比如,很多论文都是对现有的已部署的系统进行总结,对工业界的很多研究人员和工程师往往都有不小的借鉴意义。和研究类论文一样,从阅读经典文献和学习最新研究成果的角度,我们都应该认真分析和探讨每年的最佳应用类论文。
2017 年 KDD 最佳应用数据科学论文题目是,《HinDroid:基于结构性异构信息网络的智能安卓恶意软件检测系统》(HinDroid: An Intelligent Android Malware Detection System Based on Structured Heterogeneous Information Network)。可以说 2017 年是信息安全备受关注的一年,2016 年美国大选过程中传出了种种关于俄罗斯利用黑客入侵大选候选人的新闻,让整个社会对信息安全的话题变得异常敏感。这是一篇有关如何智能地分析安卓恶意软件的论文,真是非常应景。

作者群信息介绍

文章的第一作者和第二作者都来自西弗吉尼亚大学(West Virginia University)的计算机科学与电气工程系。第一作者 Shifu Hou 是该系的博士生,先后发表过多篇论文。第二作者叶艳芳(Yanfang Ye)是该系的助理教授。叶艳芳 2010 年从厦门大学博士毕业,先后在金山公司和科摩多(Comodo Security Solutions)从事信息安全方面的研究和开发工作。2013 年,她加入西弗吉尼亚大学任教。这篇 KDD 论文因为第一作者也是在读学生,因此也是最佳学生论文。
第三作者宋阳秋(Yangqiu Song)是来自香港科技大学的计算机系助理教授。宋阳秋有丰富的学术和工业界经历。2016 年加入香港科技大学,在这之前曾经在西弗吉尼亚大学任教。2012 年到 2015 年之间他曾在伊利诺伊大学香槟分校、香港科技大学、华为诺亚方舟实验室等地访问。2009 年到 2012 年曾在微软亚洲研究院和 IBM 研究院工作。2009 年于清华大学博士毕业。
最后一位作者是土耳其企业家米勒夫·阿杜勒哈尤格鲁(Melih Abdulhayoğlu)。他是科摩多(Comodo)的 CEO,于 1998 年创立了公司。这篇论文挂了他的名字是因为使用了科摩多的数据。

论文的主要贡献

我们首先来看一下这篇文章的主要贡献。类似地,按照我们周一分析最佳研究论文的思路,首先必需弄明白,这篇文章主要解决了什么场景下的问题。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《AI技术内参》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(1)

  • huan
    既然作者使用非线性的转换,而且我理解此阶段的响应变量已经是常规的向量了,那么应该可以通用的分类器都可以做分类,比如SVM, NN和决策树都行。如果没有很好的分类数据,是否可以直接使用无监督的kNN来聚类完成。(初级的AI爱好者,请拍砖)
    2017-11-01
    3
收起评论
1
返回
顶部