AI技术内参
洪亮劼
Etsy数据科学主管,前雅虎研究院资深科学家
立即订阅
8780 人已学习
课程目录
已完结 166 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 (1讲)
开篇词 | 你的360度人工智能信息助理
免费
人工智能国际顶级会议 (31讲)
001 | 聊聊2017年KDD大会的时间检验奖
002 | 精读2017年KDD最佳研究论文
003 | 精读2017年KDD最佳应用数据科学论文
004 | 精读2017年EMNLP最佳长论文之一
005 | 精读2017年EMNLP最佳长论文之二
006 | 精读2017年EMNLP最佳短论文
007 | 精读2017年ICCV最佳研究论文
008 | 精读2017年ICCV最佳学生论文
009 | 如何将“深度强化学习”应用到视觉问答系统?
010 | 精读2017年NIPS最佳研究论文之一:如何解决非凸优化问题?
011 | 精读2017年NIPS最佳研究论文之二:KSD测试如何检验两个分布的异同?
012 | 精读2017年NIPS最佳研究论文之三:如何解决非完美信息博弈问题?
013 | WSDM 2018论文精读:看谷歌团队如何做位置偏差估计
014 | WSDM 2018论文精读:看京东团队如何挖掘商品的替代信息和互补信息
015 | WSDM 2018论文精读:深度学习模型中如何使用上下文信息?
016 | The Web 2018论文精读:如何对商品的图片美感进行建模?
017 | The Web 2018论文精读:如何改进经典的推荐算法BPR?
018 | The Web 2018论文精读:如何从文本中提取高元关系?
019 | SIGIR 2018论文精读:偏差和“流行度”之间的关系
020 | SIGIR 2018论文精读:如何利用对抗学习来增强排序模型的普适性?
021 | SIGIR 2018论文精读:如何对搜索页面上的点击行为进行序列建模?
022 | CVPR 2018论文精读:如何研究计算机视觉任务之间的关系?
023 | CVPR 2018论文精读:如何从整体上对人体进行三维建模?
024 | CVPR 2018论文精读:如何解决排序学习计算复杂度高这个问题?
025 | ICML 2018论文精读:模型经得起对抗样本的攻击?这或许只是个错觉
026 | ICML 2018论文精读:聊一聊机器学习算法的“公平性”问题
027 | ICML 2018论文精读:优化目标函数的时候,有可能放大了“不公平”?
028 | ACL 2018论文精读:问答系统场景下,如何提出好问题?
029 | ACL 2018论文精读:什么是对话中的前提触发?如何检测?
030 | ACL 2018论文精读:什么是“端到端”的语义哈希?
复盘 7 | 一起来读人工智能国际顶级会议论文
搜索核心技术 (28讲)
031 | 经典搜索核心算法:TF-IDF及其变种
032 | 经典搜索核心算法:BM25及其变种(内附全年目录)
033 | 经典搜索核心算法:语言模型及其变种
034 | 机器学习排序算法:单点法排序学习
035 | 机器学习排序算法:配对法排序学习
036 | 机器学习排序算法:列表法排序学习
037 | “查询关键字理解”三部曲之分类
038 | “查询关键字理解”三部曲之解析
039 | “查询关键字理解”三部曲之扩展
040 | 搜索系统评测,有哪些基础指标?
041 | 搜索系统评测,有哪些高级指标?
042 | 如何评测搜索系统的在线表现?
043 | 文档理解第一步:文档分类
044 | 文档理解的关键步骤:文档聚类
045 | 文档理解的重要特例:多模文档建模
046 | 大型搜索框架宏观视角:发展、特点及趋势
047 | 多轮打分系统概述
048 | 搜索索引及其相关技术概述
049 | PageRank算法的核心思想是什么?
050 | 经典图算法之HITS
051 | 社区检测算法之“模块最大化 ”
052 | 机器学习排序算法经典模型:RankSVM
053 | 机器学习排序算法经典模型:GBDT
054 | 机器学习排序算法经典模型:LambdaMART
055 | 基于深度学习的搜索算法:深度结构化语义模型
056 | 基于深度学习的搜索算法:卷积结构下的隐含语义模型
057 | 基于深度学习的搜索算法:局部和分布表征下的搜索模型
复盘 1 | 搜索核心技术模块
推荐系统核心技术 (22讲)
058 | 简单推荐模型之一:基于流行度的推荐模型
059 | 简单推荐模型之二:基于相似信息的推荐模型
060 | 简单推荐模型之三:基于内容信息的推荐模型
061 | 基于隐变量的模型之一:矩阵分解
062 | 基于隐变量的模型之二:基于回归的矩阵分解
063 | 基于隐变量的模型之三:分解机
064 | 高级推荐模型之一:张量分解模型
065 | 高级推荐模型之二:协同矩阵分解
066 | 高级推荐模型之三:优化复杂目标函数
067 | 推荐的Exploit和Explore算法之一:EE算法综述
068 | 推荐的Exploit和Explore算法之二:UCB算法
069 | 推荐的Exploit和Explore算法之三:汤普森采样算法
070 | 推荐系统评测之一:传统线下评测
071 | 推荐系统评测之二:线上评测
072 | 推荐系统评测之三:无偏差估计
073 | 现代推荐架构剖析之一:基于线下离线计算的推荐架构
074 | 现代推荐架构剖析之二:基于多层搜索架构的推荐系统
075 | 现代推荐架构剖析之三:复杂现代推荐架构漫谈
076 | 基于深度学习的推荐模型之一:受限波兹曼机
077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统
078 | 基于深度学习的推荐模型之三:利用深度学习来扩展推荐系统
复盘 2 | 推荐系统核心技术模块
广告系统核心技术 (18讲)
079 | 广告系统概述
080 | 广告系统架构
081 | 广告回馈预估综述
082 | Google的点击率系统模型
083 | Facebook的广告点击率预估模型
084 | 雅虎的广告点击率预估模型
085 | LinkedIn的广告点击率预估模型
086 | Twitter的广告点击率预估模型
087 | 阿里巴巴的广告点击率预估模型
088 | 什么是“基于第二价位的广告竞拍”?
089 | 广告的竞价策略是怎样的?
090 | 如何优化广告的竞价策略?
091 | 如何控制广告预算?
092 | 如何设置广告竞价的底价?
093 | 聊一聊“程序化直接购买”和“广告期货”
094 | 归因模型:如何来衡量广告的有效性
095 | 广告投放如何选择受众?如何扩展受众群?
096 | 如何利用机器学习技术来检测广告欺诈?
自然语言处理及文本处理核心技术 (0讲)
该章节暂未更新内容,敬请期待
计算机视觉核心技术 (0讲)
该章节暂未更新内容,敬请期待
数据科学家与数据科学团队养成 (0讲)
该章节暂未更新内容,敬请期待
热点话题讨论 (0讲)
该章节暂未更新内容,敬请期待
结束语 (0讲)
该章节暂未更新内容,敬请期待
AI技术内参
登录|注册

053 | 机器学习排序算法经典模型:GBDT

洪亮劼 2018-01-03
这周我们讨论机器学习排序算法中几个经典的模型,周一分享了配对法排序中的一个经典算法,即排序支持向量机(RankSVM),这个算法的核心思想是把支持向量机应用到有序数据中,试图对数据间的顺序进行直接建模。
今天,我们来聊一聊利用机器学习进行排序的一个重要算法:“梯度增强决策树”(Gradient Boosted Decision Tree)。长期以来,包括雅虎在内的很多商业搜索引擎都利用这种算法作为排序算法。

梯度增强决策树的历史

梯度回归决策树的思想来源于两个地方。首先是“增强算法”(Boosting),一种试图用弱学习器提升为强学习器的算法。这种算法中比较成熟的、有代表性的算法是由罗伯特⋅施派尔(Robert Schapire)和约阿夫⋅福伦德(Yoav Freund)所提出的 AdaBoost 算法[1]。因为这个算法两人于 2003 年获得理论计算机界的重要奖项“哥德尔奖”(Gödel Prize)。罗伯特之前在普林斯顿大学任计算机系教授,目前在微软研究院的纽约实验室工作。约阿夫一直在加州大学圣地亚哥分校任计算机系教授。
增强算法的工作机制都比较类似,那就是先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的训练样本在后续受到更多关注,然后基于调整后的样本分布来训练下一个基学习器。如此重复进行,直到基学习器数目达到事先制定的值,最终将所有的基学习器进行加权结合。如果你对“偏差 - 方差分解”(Bias-Variance Decomposition)有耳闻的话,那么,Boosting 主要关注降低偏差。在实际效果中,增强算法往往能基于泛化性能相当弱的学习器构建出很强的集成结果
AdaBoost 提出后不久,机器学习学者和统计学家杰罗姆⋅弗赖德曼(Jerome H. Friedman)等人发表了一篇论文 [2],从“统计视角”解释 AdaBoost 实质上是基于加性模型(Additive Model)以类似牛顿迭代法来优化指数损失函数(Loss Function)。于是受此启发,杰米姆提出了“梯度增强”(Gradient Boosting)的想法。这也就是梯度回归决策树思想来源的第二个地方,也是直接根源。如果你希望对“梯度增强”有进一步的了解,可以见参考文献 [3]。
最早把“梯度增强”的想法应用到搜索中,是雅虎研究院的学者于 2007 年左右提出的 [4]&[5]。之后,Facebook 把梯度增强决策树应用于新闻推荐中 [6]。

梯度增强的思想核心

我们刚才简单讲了增强算法的思路,那么要想理解梯度增强决策树,就必须理解梯度增强的想法。
梯度增强首先还是增强算法的一个扩展,也是希望能用一系列的弱学习器来达到一个强学习器的效果,从而逼近目标变量的值,也就是我们常说的标签值。而根据加性模型的假设,这种逼近效果是这些弱学习器的一个加权平均。也就是说,最终的预测效果,是所有单个弱学习器的一个平均效果,只不过这个平均不是简单的平均,而是一个加权的效果。
那么如何来构造这些弱学习器和加权平均的权重呢?
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《AI技术内参》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(2)

  • 黄德平
    残差网络估计是受到GBDT的启发
    2018-12-13
  • 范深
    神经网络与增强梯度最简单的结合,就是把多个神经网络作为弱分类器串联起来?我相信还有更妙的结合点:)
    2018-01-17
收起评论
2
返回
顶部