AI技术内参
洪亮劼
Etsy数据科学主管,前雅虎研究院资深科学家
立即订阅
8829 人已学习
课程目录
已完结 166 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 (1讲)
开篇词 | 你的360度人工智能信息助理
免费
人工智能国际顶级会议 (31讲)
001 | 聊聊2017年KDD大会的时间检验奖
002 | 精读2017年KDD最佳研究论文
003 | 精读2017年KDD最佳应用数据科学论文
004 | 精读2017年EMNLP最佳长论文之一
005 | 精读2017年EMNLP最佳长论文之二
006 | 精读2017年EMNLP最佳短论文
007 | 精读2017年ICCV最佳研究论文
008 | 精读2017年ICCV最佳学生论文
009 | 如何将“深度强化学习”应用到视觉问答系统?
010 | 精读2017年NIPS最佳研究论文之一:如何解决非凸优化问题?
011 | 精读2017年NIPS最佳研究论文之二:KSD测试如何检验两个分布的异同?
012 | 精读2017年NIPS最佳研究论文之三:如何解决非完美信息博弈问题?
013 | WSDM 2018论文精读:看谷歌团队如何做位置偏差估计
014 | WSDM 2018论文精读:看京东团队如何挖掘商品的替代信息和互补信息
015 | WSDM 2018论文精读:深度学习模型中如何使用上下文信息?
016 | The Web 2018论文精读:如何对商品的图片美感进行建模?
017 | The Web 2018论文精读:如何改进经典的推荐算法BPR?
018 | The Web 2018论文精读:如何从文本中提取高元关系?
019 | SIGIR 2018论文精读:偏差和“流行度”之间的关系
020 | SIGIR 2018论文精读:如何利用对抗学习来增强排序模型的普适性?
021 | SIGIR 2018论文精读:如何对搜索页面上的点击行为进行序列建模?
022 | CVPR 2018论文精读:如何研究计算机视觉任务之间的关系?
023 | CVPR 2018论文精读:如何从整体上对人体进行三维建模?
024 | CVPR 2018论文精读:如何解决排序学习计算复杂度高这个问题?
025 | ICML 2018论文精读:模型经得起对抗样本的攻击?这或许只是个错觉
026 | ICML 2018论文精读:聊一聊机器学习算法的“公平性”问题
027 | ICML 2018论文精读:优化目标函数的时候,有可能放大了“不公平”?
028 | ACL 2018论文精读:问答系统场景下,如何提出好问题?
029 | ACL 2018论文精读:什么是对话中的前提触发?如何检测?
030 | ACL 2018论文精读:什么是“端到端”的语义哈希?
复盘 7 | 一起来读人工智能国际顶级会议论文
搜索核心技术 (28讲)
031 | 经典搜索核心算法:TF-IDF及其变种
032 | 经典搜索核心算法:BM25及其变种(内附全年目录)
033 | 经典搜索核心算法:语言模型及其变种
034 | 机器学习排序算法:单点法排序学习
035 | 机器学习排序算法:配对法排序学习
036 | 机器学习排序算法:列表法排序学习
037 | “查询关键字理解”三部曲之分类
038 | “查询关键字理解”三部曲之解析
039 | “查询关键字理解”三部曲之扩展
040 | 搜索系统评测,有哪些基础指标?
041 | 搜索系统评测,有哪些高级指标?
042 | 如何评测搜索系统的在线表现?
043 | 文档理解第一步:文档分类
044 | 文档理解的关键步骤:文档聚类
045 | 文档理解的重要特例:多模文档建模
046 | 大型搜索框架宏观视角:发展、特点及趋势
047 | 多轮打分系统概述
048 | 搜索索引及其相关技术概述
049 | PageRank算法的核心思想是什么?
050 | 经典图算法之HITS
051 | 社区检测算法之“模块最大化 ”
052 | 机器学习排序算法经典模型:RankSVM
053 | 机器学习排序算法经典模型:GBDT
054 | 机器学习排序算法经典模型:LambdaMART
055 | 基于深度学习的搜索算法:深度结构化语义模型
056 | 基于深度学习的搜索算法:卷积结构下的隐含语义模型
057 | 基于深度学习的搜索算法:局部和分布表征下的搜索模型
复盘 1 | 搜索核心技术模块
推荐系统核心技术 (22讲)
058 | 简单推荐模型之一:基于流行度的推荐模型
059 | 简单推荐模型之二:基于相似信息的推荐模型
060 | 简单推荐模型之三:基于内容信息的推荐模型
061 | 基于隐变量的模型之一:矩阵分解
062 | 基于隐变量的模型之二:基于回归的矩阵分解
063 | 基于隐变量的模型之三:分解机
064 | 高级推荐模型之一:张量分解模型
065 | 高级推荐模型之二:协同矩阵分解
066 | 高级推荐模型之三:优化复杂目标函数
067 | 推荐的Exploit和Explore算法之一:EE算法综述
068 | 推荐的Exploit和Explore算法之二:UCB算法
069 | 推荐的Exploit和Explore算法之三:汤普森采样算法
070 | 推荐系统评测之一:传统线下评测
071 | 推荐系统评测之二:线上评测
072 | 推荐系统评测之三:无偏差估计
073 | 现代推荐架构剖析之一:基于线下离线计算的推荐架构
074 | 现代推荐架构剖析之二:基于多层搜索架构的推荐系统
075 | 现代推荐架构剖析之三:复杂现代推荐架构漫谈
076 | 基于深度学习的推荐模型之一:受限波兹曼机
077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统
078 | 基于深度学习的推荐模型之三:利用深度学习来扩展推荐系统
复盘 2 | 推荐系统核心技术模块
广告系统核心技术 (18讲)
079 | 广告系统概述
080 | 广告系统架构
081 | 广告回馈预估综述
082 | Google的点击率系统模型
083 | Facebook的广告点击率预估模型
084 | 雅虎的广告点击率预估模型
085 | LinkedIn的广告点击率预估模型
086 | Twitter的广告点击率预估模型
087 | 阿里巴巴的广告点击率预估模型
088 | 什么是“基于第二价位的广告竞拍”?
089 | 广告的竞价策略是怎样的?
090 | 如何优化广告的竞价策略?
091 | 如何控制广告预算?
092 | 如何设置广告竞价的底价?
093 | 聊一聊“程序化直接购买”和“广告期货”
094 | 归因模型:如何来衡量广告的有效性
095 | 广告投放如何选择受众?如何扩展受众群?
096 | 如何利用机器学习技术来检测广告欺诈?
自然语言处理及文本处理核心技术 (0讲)
该章节暂未更新内容,敬请期待
计算机视觉核心技术 (0讲)
该章节暂未更新内容,敬请期待
数据科学家与数据科学团队养成 (0讲)
该章节暂未更新内容,敬请期待
热点话题讨论 (0讲)
该章节暂未更新内容,敬请期待
结束语 (0讲)
该章节暂未更新内容,敬请期待
AI技术内参
登录|注册

内参特刊 | 和你聊聊每个人都关心的人工智能热点话题

洪亮劼 2018-09-27
受极客邦科技邀请,1 月份我回国参加 AICon,1 月 13 日晚做了一场直播,直播的主题是“人工智能 20 问”,编辑们收集整理了一些大家感兴趣的有关人工智能的话题,我在直播中分享了我自己这些年来的一些经验和心得。这场直播的文字精简版已经发布在 InfoQ 的公众号上,今天我也和你在专栏里分享,希望其中的某些话题能够对你有所启发,也欢迎你留言和我讨论。
00:00 / 00:00

暖场篇

Q:您本硕博学的都是计算机科学专业,这个专业其实有很多方向,您为什么会选择人工智能这样一个比较新的领域?
A:我到美国读博的时候,开始并没有想去学习人工智能,而是想做一些操作系统及软件的研发。到了美国以后,我的导师认为社交媒体的数据挖掘、机器学习应用比较前沿,希望有一个相关课题,当时把新的课题给了我。我从这个课题入手,接触了机器学习,接触了人工智能,然后慢慢地走上了人工智能的发展方向。
Q:您怎么定义人工智能?
A:我认为人工智能有两个方面非常重要。一是人工智能是数据驱动的,也就是说一个人工智能产品一定得是有数据支撑的;另一方面人工智能是一个持续的决策过程,比如说 AlphaGo、无人驾驶等,都是利用机器学习,以及其他算法进行持续决策的一个过程。在人工智能这个定义中,数据驱动和持续决策应该说是非常重要的两个元素

落地篇

Q:您能不能详细介绍一下目前在 Etsy 有哪些人工智能的技术是实实在在落地了的?落地的场景是什么?取得了什么样的效果?
A:Etsy 人工智能应用主要是围绕三块在做。
第一块是搜索。其实这也是普通电商的一个场景,你来到电商平台输入一个关键字,Etsy 返回一个搜索的结果,这个看上去很简单,好像跟传统的搜索没有什么区别。但实际上电商的搜索,不管是大一点的电商,如亚马逊、京东、阿里,还是小一点的电商,真正能够做到比较完美的搜索体验是非常困难的。比如一部分用户的购买欲望很强烈,那么我们如何能够帮助他找到最合适的商品;也有一部分用户,并没有特别强的购买意愿,这个时候他希望通过搜索一些关键字来获取灵感,从你的平台上能得到一种逛街的体验,所以这个时候,搜索带来的东西就未见得一定是他要买的,如何能够通过搜索给他带来逛街的体验是比较困难的。这块搜索是我们现在一直在做的,并且用不同的模型来进行落地尝试。
那么第二个方向就是推荐系统。电商的推荐也是一个老生常谈的话题了,但在一些新的场景下如何做?比如 Etsy 上有很多的商品是手工艺品,数量可能很少,那么在给用户推荐的时候,必须考虑到它的件数是有限的,这个地方也是有一些难点。
第三个当然就是我们的广告平台。如何能够通过人工智能帮助广告提升,广告是一个买卖的双方系统,如何帮助卖家实现好的宣传效果,这个也需要通过算法来更新的。
Q:目前已落地的一些人工智能技术,起到的作用和我们传统的一些办法相比,效果明显吗?
A:人工智能在搜索广告和推荐这块效果已经比较明朗了,肯定是比传统的方法做得好,但是它的提升度在不同的情况下区别还蛮大的。我们如果能够让效果最大化,必须跟产品界面,还有前端等融合,形成一个统一的产品,才能让算法得到的结果以最好的形式展现出来
Q:您认为人工智能落地遇到的最大的一个挑战,或者困难是什么?
A:现在人工智能落地最难的并不是算法本身,最难的是和场景的对接。算法本身可能是一个数学描述,是个模型,但是真实的场景跟模型中间还有一段距离。这个距离需要数据科学家进行“翻译”,把我们的场景和算法衔接起来,需要我们的工程师,能够去根据新翻译的场景调整算法。所以不是所有的经典的算法你都能够马上利用,而是需要一些更改,这种更改必须是基于你的场景,你去理解这个场景,并且能够进行合理的翻译,这实际上是最困难的。

观点篇

Q:人工智能对程序员就业有什么影响?
A:我刚才已经谈到了,数据科学家和人工智能工程师职能有重叠,但也略有不同。打个比方,就像你踢一场足球赛,需要有 11 个队员,有前锋,有中场,有后卫,有守门员,一个复杂的人工智能产品需要有不同的角色,这些角色都需要有一定人工智能机器学习背景,比如说前端工程师,一些设计的人员,一些产品经理都需要人工智能背景。那么从这个角度看这个问题,我觉得反而是大家的机会更多了,大家可以根据自己的背景,根据自己的喜好,寻找适合自己的角色
Q:人工智能会在哪个行业爆发?
A:我觉得另外一个角度看这个问题更好,有多少行业能够去利用人工智能?就像你刚才提到的,这个人工智能可能会像空气,会像水,会像电一样,成为一个基础设施,我很认同,今年可能会有一些新的契机,我对这方面也很感兴趣。我们也看到,像吴恩达,他想去对传统制造业和人工智能做一些结合,我觉得这个趋势就是一个很好的切入点,不是说现在就能够彻底地改变制造,因为毕竟各行各业有些很深的问题,你得去了解它,但是它可以打开一扇门,让更多的传统行业,比如像制造业的人来了解人工智能,我觉得这个可能会是未来的方向。
Q:现在有一种说法是人工智能就是人工智障,您怎么看?
A:今天我们所看到的人工智能,像 AlphaGo 也好,或者图像识别的一些突破,云技术的一些突破,它的确比 10 年前,比 20 年前的技术要好的多,我觉得人工智能的确到了一个好的阶段。同时,我们也必须要承认,人工智能不能做的事情也很多,并且它做绝大多数事情可能不如我们想象的完美。但是我觉得我们也不必给它贴上人工智障的标签,以表达我们的失望之情。人工智能目前还处于一个很初级的阶段,前面还有很长的路走。我自己希望通过做一个传播者和一个教育者,让更多的人了解人工智能
Q:您觉得人工智能存在泡沫吗?
A:我个人觉得现在的确是有些泡沫,比如说媒体的热炒,媒体可能不是很了解情况,然后去下一些断言。但是,我个人感觉现在的泡沫处于一个比较健康的状况,这个泡沫帮助更多的人了解这个行业,帮助更多的人投身到这个行业,帮助更多的社会资源聚焦到人工智能。

人才篇

Q:我相信大家都比较关心数据科学团队的招聘的情况,您现在会做很多招聘的工作,您在招聘的过程中有怎样的一个标准,或者最看中候选人的一个特质是什么?
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《AI技术内参》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(1)

  • 林彦
    请问老师您推荐的3个会议里文献综述类文章除了review, survey,还有哪些常见的关键字或其他检索方法?谢谢
    2018-01-27
    3
收起评论
1
返回
顶部