AI技术内参
洪亮劼
Etsy数据科学主管,前雅虎研究院资深科学家
立即订阅
8412 人已学习
课程目录
已完结 166 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 (1讲)
开篇词 | 你的360度人工智能信息助理
免费
人工智能国际顶级会议 (15讲)
001 | 聊聊2017年KDD大会的时间检验奖
002 | 精读2017年KDD最佳研究论文
003 | 精读2017年KDD最佳应用数据科学论文
004 | 精读2017年EMNLP最佳长论文之一
005 | 精读2017年EMNLP最佳长论文之二
006 | 精读2017年EMNLP最佳短论文
007 | 精读2017年ICCV最佳研究论文
008 | 精读2017年ICCV最佳学生论文
009 | 如何将“深度强化学习”应用到视觉问答系统?
010 | 精读2017年NIPS最佳研究论文之一:如何解决非凸优化问题?
011 | 精读2017年NIPS最佳研究论文之二:KSD测试如何检验两个分布的异同?
012 | 精读2017年NIPS最佳研究论文之三:如何解决非完美信息博弈问题?
013 | WSDM 2018论文精读:看谷歌团队如何做位置偏差估计
014 | WSDM 2018论文精读:看京东团队如何挖掘商品的替代信息和互补信息
015 | WSDM 2018论文精读:深度学习模型中如何使用上下文信息?
搜索核心技术 (28讲)
031 | 经典搜索核心算法:TF-IDF及其变种
032 | 经典搜索核心算法:BM25及其变种(内附全年目录)
033 | 经典搜索核心算法:语言模型及其变种
034 | 机器学习排序算法:单点法排序学习
035 | 机器学习排序算法:配对法排序学习
036 | 机器学习排序算法:列表法排序学习
037 | “查询关键字理解”三部曲之分类
038 | “查询关键字理解”三部曲之解析
039 | “查询关键字理解”三部曲之扩展
040 | 搜索系统评测,有哪些基础指标?
041 | 搜索系统评测,有哪些高级指标?
042 | 如何评测搜索系统的在线表现?
043 | 文档理解第一步:文档分类
044 | 文档理解的关键步骤:文档聚类
045 | 文档理解的重要特例:多模文档建模
046 | 大型搜索框架宏观视角:发展、特点及趋势
047 | 多轮打分系统概述
048 | 搜索索引及其相关技术概述
049 | PageRank算法的核心思想是什么?
050 | 经典图算法之HITS
051 | 社区检测算法之“模块最大化 ”
052 | 机器学习排序算法经典模型:RankSVM
053 | 机器学习排序算法经典模型:GBDT
054 | 机器学习排序算法经典模型:LambdaMART
055 | 基于深度学习的搜索算法:深度结构化语义模型
056 | 基于深度学习的搜索算法:卷积结构下的隐含语义模型
057 | 基于深度学习的搜索算法:局部和分布表征下的搜索模型
复盘 1 | 搜索核心技术模块
推荐系统核心技术 (22讲)
058 | 简单推荐模型之一:基于流行度的推荐模型
059 | 简单推荐模型之二:基于相似信息的推荐模型
060 | 简单推荐模型之三:基于内容信息的推荐模型
061 | 基于隐变量的模型之一:矩阵分解
062 | 基于隐变量的模型之二:基于回归的矩阵分解
063 | 基于隐变量的模型之三:分解机
064 | 高级推荐模型之一:张量分解模型
065 | 高级推荐模型之二:协同矩阵分解
066 | 高级推荐模型之三:优化复杂目标函数
067 | 推荐的Exploit和Explore算法之一:EE算法综述
068 | 推荐的Exploit和Explore算法之二:UCB算法
069 | 推荐的Exploit和Explore算法之三:汤普森采样算法
070 | 推荐系统评测之一:传统线下评测
071 | 推荐系统评测之二:线上评测
072 | 推荐系统评测之三:无偏差估计
073 | 现代推荐架构剖析之一:基于线下离线计算的推荐架构
074 | 现代推荐架构剖析之二:基于多层搜索架构的推荐系统
075 | 现代推荐架构剖析之三:复杂现代推荐架构漫谈
076 | 基于深度学习的推荐模型之一:受限波兹曼机
077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统
078 | 基于深度学习的推荐模型之三:利用深度学习来扩展推荐系统
复盘 2 | 推荐系统核心技术模块
广告系统核心技术 (0讲)
该章节暂未更新内容,敬请期待
自然语言处理及文本处理核心技术 (17讲)
097 | LDA模型的前世今生
098 | LDA变种模型知多少
099 | 针对大规模数据,如何优化LDA算法?
100 | 基础文本分析模型之一:隐语义分析
101 | 基础文本分析模型之二:概率隐语义分析
102 | 基础文本分析模型之三:EM算法
103 | 为什么需要Word2Vec算法?
104 | Word2Vec算法有哪些扩展模型?
105 | Word2Vec算法有哪些应用?
106 | 序列建模的深度学习利器:RNN基础架构
107 | 基于门机制的RNN架构:LSTM与GRU
108 | RNN在自然语言处理中有哪些应用场景?
109 | 对话系统之经典的对话模型
110 | 任务型对话系统有哪些技术要点?
111 | 聊天机器人有哪些核心技术要点?
112 | 什么是文档情感分类?
113 | 如何来提取情感“实体”和“方面”呢?
计算机视觉核心技术 (0讲)
该章节暂未更新内容,敬请期待
数据科学家与数据科学团队养成 (15讲)
127 | 数据科学家基础能力之概率统计
128 | 数据科学家基础能力之机器学习
129 | 数据科学家基础能力之系统
130 | 数据科学家高阶能力之分析产品
131 | 数据科学家高阶能力之评估产品
132 | 数据科学家高阶能力之如何系统提升产品性能
133 | 职场话题:当数据科学家遇见产品团队
134 | 职场话题:数据科学家应聘要具备哪些能力?
135 | 职场话题:聊聊数据科学家的职场规划
136 | 如何组建一个数据科学团队?
137 | 数据科学团队养成:电话面试指南
138 | 数据科学团队养成:Onsite面试面面观
139 | 成为“香饽饽”的数据科学家,如何衡量他们的工作呢?
140 | 人工智能领域知识体系更新周期只有5~6年,数据科学家如何培养?
141 | 数据科学家团队组织架构:水平还是垂直,这是个问题
热点话题讨论 (2讲)
151 | 精读AlphaGo Zero论文
152 | 2017人工智能技术发展盘点
结束语 (0讲)
该章节暂未更新内容,敬请期待
AI技术内参
登录|注册

061 | 基于隐变量的模型之一:矩阵分解

洪亮劼 2018-03-05

上周我们聊了三个简单的推荐模型,分别是基于流行度的推荐模型,基于相似信息的推荐模型和基于内容特征的推荐模型。

这周,我们来看一类非常重要的推荐模型:基于隐变量的推荐模型。这类模型的优势是对用户和物品信息中的隐含结构进行建模,从而能够挖掘更加深层次的用户和物品关系。

什么是隐变量

在解释如何用隐变量来生成推荐结果之前,我们先来说一下什么是隐变量。

隐变量(Latent Variable),顾名思义,就是“隐藏的变量”或者叫“隐藏的参数”,这里主要是指我们假定实际的数据是由一系列的隐含变量产生的。我们通过模型的假设,知道隐变量之间的关系,但暂时并不知道隐变量的取值。因此需要通过“推断”(Inference)过程来确定隐变量的实际取值。当我们知道了这些隐变量的取值之后,就可以根据这些取值来对未来的数据进行预测和分析。

隐变量往往还带有“统计分布”(Distribution)的假设。什么意思呢?就是隐变量之间,或者隐变量和显式变量之间的关系,我们往往认为是由某种分布产生的。

举一个最简单的隐变量模型的例子,那就是“高斯混合模型”(Mixture of Gaussian)。

高斯混合模型假设数据是由多个不同的高斯分布产生的,每一个高斯分布有自己的均值和方差。在最简单的两个高斯的情况下,每一个数据点,都有可能是由这两个高斯分布中的一个产生的,但是,究竟是哪一个我们并不知道。于是,对于每一个数据点,我们就有一个隐含的变量,来表达当前这个数据点究竟来自哪一个高斯分布。

很明显,这个隐含变量的取值事先并不知道。除了这个隐含变量我们不知道以外,两个高斯分布的均值和方法其实也不知道。于是,对于高斯混合模型来说,整个学习的过程就需要估计每个数据点的来源以及多个高斯分布的均值和方差。高斯混合模型,几乎是最简单的隐变量模型,但也给我们了展示了使用隐变量模型对数据建模的灵活性以及训练的复杂性

矩阵分解作为隐变量模型

了解了隐变量模型的基本的概念以后,我们还是回到推荐的场景。

© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《AI技术内参》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(2)

  • 林彦
    基于隐变量的矩阵分解有如下缺点:
    推荐结果不具有很好的可解释性,分解出来的用户和物品矩阵的每个维度无法和现实生活中的概念来解释,无法用现实概念给每个维度命名,只能理解为潜在语义空间。

    除了上面一点,现实的评分矩阵特别稀疏。为了使得数据更加稠密,可以加入了历史的隐式反馈数据(比如用户浏览过浏览过某个电影就可以当做一定成的喜爱的正反馈)。

    我们也可以使用用户的标签(比如年龄,性别,职业)推测用户对每个因素的喜爱程度。

    还可以考虑随着时间变化的动态因素以及不同因素的置信度。

    类似于之前文章中减去平均打分的方法(将来可能还会讲)。我们观测到的评分数据大部分都是都是和用户或物品无关的因素产生的效果,即有很大一部分因素是和用户对物品的喜好无关而只取决于用户或物品本身特性的。例如,对于乐观的用户来说,它的评分行为普遍偏高,而对批判性用户来说,他的评分记录普遍偏低,即使他们对同一物品的评分相同,但是他们对该物品的喜好程度却并不一样。同理,对物品来说,以电影为例,受大众欢迎的电影得到的评分普遍偏高,而一些烂片的评分普遍偏低,这些因素都是独立于用户或产品的因素,而和用户对产品的的喜好无关。

    我们把这些独立于用户或独立于物品的因素称为偏置(Bias)部分,将用户和物品的交互即用户对物品的喜好部分称为个性化部分。在矩阵分解模型中偏好部分对提高评分预测准确率起的作用高于个性化部分所起的作用。
    2018-03-05
    4
  • 极客星星
    矩阵分解方法应用时 经常遇到的问题是 只有正样本 缺少负样本 针对这个问题有一些策略 如BPR 等
    2018-03-06
收起评论
2
返回
顶部