137 | 数据科学团队养成:电话面试指南
洪亮劼
该思维导图由 AI 生成,仅供参考
眼下,数据科学或者人工智能团队已经成了很多数据驱动公司的标准配置团队,数据科学家或者人工智能工程师也成为了最“性感”的职业。不少公司都在想办法建立或者扩展自己的数据科学团队。那么,对于一个公司来说,究竟需要什么样的数据科学团队呢?这就成了很多公司在发展过程中都会遇到的棘手的问题。
我们在之前的一篇分享里已经剖析过,作为一个工程团队的负责人,你该如何招聘自己的数据科学家团队。在那篇分享里,我们探讨了目前人才市场上大致有两类数据科学家,一类偏数据分析,一类偏算法模型。并且我们详细探聊了聊这两类数据科学家所需的技能和在不同团队(比如大团队和小团队)中起到的作用。
今天,我们来聊一聊组建数据科学家团队所必不可少的一个步骤:电话面试。
筛选简历
在电话面试之前,有一个步骤是必不可少的,那就是筛选简历。因为人工智能和数据科学家的职业背景的原因,我来分享一下如何筛选具有博士学历,特别是计算机专业相关毕业生的简历。筛选简历的过程需要很细心,对于普通的博士毕业生,我们会快速看以下两个方面的信息。
第一,候选人是否有高水平的论文发表。关于论文发表,首先需要看的是论文档次,也就是论文是否发表在高质量的会议上或者高水平的期刊上。对于计算机专业的博士生来说,会议一般比期刊更重要。其次,我们也要看候选人的论文是专注一个问题或者一个小领域还是很多领域都有涉猎。同时,对于这些论文,要关注候选人是第几作者。然后,我们需要关注的是论文发表频率,看论文工作是否都是一年做出来的。最后,我们可以去看一看这些论文的引用数。一般来说,博士刚毕业不会有很高的论文引用量,但也不乏水平比较高的候选人,论文会有惊人的引用量。
第二,我们需要看一看候选人是否有工业界实习经历,是研究实习还是工程实习。这里面,我们可能关注的是实习的公司。而且,我们可以关注是否是同一家公司还是多个公司。如果是研究实习的话,我们还需要去看一看候选人是否有相应的论文发表。
在看了这两个因素之后,我们心中对于这个候选人就有一个很基本的认识。在需要高标准的情况下,一个博士毕业生需要有 3-4 篇第一作者的高水平论文发表(在毕业的时候,引用数在 70-100 左右),然后有 1-2 次工业界实习经验。
除了这两个硬指标以外,我们还会关注下面这些内容:
简历里是否有一些信息不完整的部分。比如有一些明显断档的经历,没有本科学校,没有说明博士生导师;
会什么编程语言和开发工具。是否只熟悉 Matlab 或者 R,是否有开源项目贡献;
是否已经有审稿经验;
是否已经有组织会议的经验。
所有这些因素都没有明显问题之后,我们已经定位到了比较靠谱的候选人(通常,只有少数人能够通过上面这轮简历筛选)。我们可以根据实际情况来调整在筛选简历这里的标准线从而让候选人能够和我们直接交流证明自己的实力。
这里再说几个比较细的准则:
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
- 深入了解
- 翻译
- 解释
- 总结
招聘数据科学家是数据驱动公司的重要任务之一。本文从筛选简历入手,详细介绍了如何对具有博士学历、特别是计算机专业相关毕业生的简历进行筛选,包括论文发表情况、工业界实习经历、编程语言和开发工具熟练程度等方面。此外,还介绍了对于已有工作经验的候选人的简历筛选要素。文章内容针对性强,为招聘数据科学家提供了实用的电话面试指南,包括电话面试的目的、考察内容和问题。作者强调了对候选人专业知识、解决问题能力、表达能力和沟通能力的重点考察,以及如何衡量没有论文但有多年企业经验的候选人。这些指南有助于公司快速筛选出合适的候选人,同时也为求职者提供了借鉴和启发。
仅可试看部分内容,如需阅读全部内容,请付费购买文章所属专栏
《AI 技术内参》,新⼈⾸单¥98
《AI 技术内参》,新⼈⾸单¥98
立即购买
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
登录 后留言
全部留言(3)
- 最新
- 精选
- 范深尝试回答一下老师最后留的问题,我就刚好满足这个条件,事实上国内毕业的大部分算法工程师(包括博士)也都没有比较重量级的文章。对于这部分候选人,更多考察他有没有将算法灵活运用到工程项目的能力,以及是否有持续跟进学术界和工业界最新的研究进展,两者分别对应了候选人的工程应用能力和学术研究能力。我自己在工作中也会尝试一些研究课题,寻求合适的机会发表。2018-02-055
- qiang.li本科没希望了吗?2018-02-0611
- Andy本科硕士,完全没机会了吗?2018-09-15
收起评论