094 | 归因模型:如何来衡量广告的有效性
洪亮劼

在互联网广告生态系统的环境中,我们已经分享了不少关于点击率优化和竞价排名以及如何优化出价的内容。接下来我们开始讨论一些计算广告相关的高级话题。之所以说这些是高级话题,是因为作为机器学习在计算广告的应用,这些话题往往都比较偏冷,但在现实中又特别有实用价值。
今天我们先来聊一聊归因模型,这种技术在计算广告业中被广泛使用。
什么是归因模型
归因模型(Attribution Model)是一种计算广告中分配“贡献”的机制。
在现代网站或者应用中,每一个用户都有可能在每一次会话中看到多个不同的广告,或者在多个不同的会话中看到相同广告的不同展示。那么,当用户点击了某个广告,或者是当用户转化以后,比如购买了某个商品或是订阅了某种服务,广告商通常希望知道究竟是哪一个广告起了更大的作用。也就是说,广告商想知道用户接收到的不同广告对这个最后的转化事件都起了什么作用,这个问题就是归因模型研究的核心。
归因模型之所以重要,是因为这里面牵涉到了广告有效性这个话题。那么,如何来衡量广告的有效性呢?
衡量广告的有效性,就需要利用归因模型,针对每一个转化来分配“贡献”。这样,对于广告商来说,就可以通过贡献值的叠加来看某一个渠道或者某一个内容发布平台的转化效果。
公开
同步至部落
取消
完成
0/2000
笔记
复制
AI
- 深入了解
- 翻译
- 解释
- 总结
仅可试看部分内容,如需阅读全部内容,请付费购买文章所属专栏
《AI 技术内参》,新⼈⾸单¥98
《AI 技术内参》,新⼈⾸单¥98
立即购买
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
登录 后留言
全部留言(1)
- 最新
- 精选
- 韩 * *最终的投放收益是否增加是终极衡量指标
收起评论