AI技术内参
洪亮劼
Etsy数据科学主管,前雅虎研究院资深科学家
立即订阅
8426 人已学习
课程目录
已完结 166 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 (1讲)
开篇词 | 你的360度人工智能信息助理
免费
人工智能国际顶级会议 (15讲)
001 | 聊聊2017年KDD大会的时间检验奖
002 | 精读2017年KDD最佳研究论文
003 | 精读2017年KDD最佳应用数据科学论文
004 | 精读2017年EMNLP最佳长论文之一
005 | 精读2017年EMNLP最佳长论文之二
006 | 精读2017年EMNLP最佳短论文
007 | 精读2017年ICCV最佳研究论文
008 | 精读2017年ICCV最佳学生论文
009 | 如何将“深度强化学习”应用到视觉问答系统?
010 | 精读2017年NIPS最佳研究论文之一:如何解决非凸优化问题?
011 | 精读2017年NIPS最佳研究论文之二:KSD测试如何检验两个分布的异同?
012 | 精读2017年NIPS最佳研究论文之三:如何解决非完美信息博弈问题?
013 | WSDM 2018论文精读:看谷歌团队如何做位置偏差估计
014 | WSDM 2018论文精读:看京东团队如何挖掘商品的替代信息和互补信息
015 | WSDM 2018论文精读:深度学习模型中如何使用上下文信息?
搜索核心技术 (28讲)
031 | 经典搜索核心算法:TF-IDF及其变种
032 | 经典搜索核心算法:BM25及其变种(内附全年目录)
033 | 经典搜索核心算法:语言模型及其变种
034 | 机器学习排序算法:单点法排序学习
035 | 机器学习排序算法:配对法排序学习
036 | 机器学习排序算法:列表法排序学习
037 | “查询关键字理解”三部曲之分类
038 | “查询关键字理解”三部曲之解析
039 | “查询关键字理解”三部曲之扩展
040 | 搜索系统评测,有哪些基础指标?
041 | 搜索系统评测,有哪些高级指标?
042 | 如何评测搜索系统的在线表现?
043 | 文档理解第一步:文档分类
044 | 文档理解的关键步骤:文档聚类
045 | 文档理解的重要特例:多模文档建模
046 | 大型搜索框架宏观视角:发展、特点及趋势
047 | 多轮打分系统概述
048 | 搜索索引及其相关技术概述
049 | PageRank算法的核心思想是什么?
050 | 经典图算法之HITS
051 | 社区检测算法之“模块最大化 ”
052 | 机器学习排序算法经典模型:RankSVM
053 | 机器学习排序算法经典模型:GBDT
054 | 机器学习排序算法经典模型:LambdaMART
055 | 基于深度学习的搜索算法:深度结构化语义模型
056 | 基于深度学习的搜索算法:卷积结构下的隐含语义模型
057 | 基于深度学习的搜索算法:局部和分布表征下的搜索模型
复盘 1 | 搜索核心技术模块
推荐系统核心技术 (22讲)
058 | 简单推荐模型之一:基于流行度的推荐模型
059 | 简单推荐模型之二:基于相似信息的推荐模型
060 | 简单推荐模型之三:基于内容信息的推荐模型
061 | 基于隐变量的模型之一:矩阵分解
062 | 基于隐变量的模型之二:基于回归的矩阵分解
063 | 基于隐变量的模型之三:分解机
064 | 高级推荐模型之一:张量分解模型
065 | 高级推荐模型之二:协同矩阵分解
066 | 高级推荐模型之三:优化复杂目标函数
067 | 推荐的Exploit和Explore算法之一:EE算法综述
068 | 推荐的Exploit和Explore算法之二:UCB算法
069 | 推荐的Exploit和Explore算法之三:汤普森采样算法
070 | 推荐系统评测之一:传统线下评测
071 | 推荐系统评测之二:线上评测
072 | 推荐系统评测之三:无偏差估计
073 | 现代推荐架构剖析之一:基于线下离线计算的推荐架构
074 | 现代推荐架构剖析之二:基于多层搜索架构的推荐系统
075 | 现代推荐架构剖析之三:复杂现代推荐架构漫谈
076 | 基于深度学习的推荐模型之一:受限波兹曼机
077 | 基于深度学习的推荐模型之二:基于RNN的推荐系统
078 | 基于深度学习的推荐模型之三:利用深度学习来扩展推荐系统
复盘 2 | 推荐系统核心技术模块
广告系统核心技术 (0讲)
该章节暂未更新内容,敬请期待
自然语言处理及文本处理核心技术 (17讲)
097 | LDA模型的前世今生
098 | LDA变种模型知多少
099 | 针对大规模数据,如何优化LDA算法?
100 | 基础文本分析模型之一:隐语义分析
101 | 基础文本分析模型之二:概率隐语义分析
102 | 基础文本分析模型之三:EM算法
103 | 为什么需要Word2Vec算法?
104 | Word2Vec算法有哪些扩展模型?
105 | Word2Vec算法有哪些应用?
106 | 序列建模的深度学习利器:RNN基础架构
107 | 基于门机制的RNN架构:LSTM与GRU
108 | RNN在自然语言处理中有哪些应用场景?
109 | 对话系统之经典的对话模型
110 | 任务型对话系统有哪些技术要点?
111 | 聊天机器人有哪些核心技术要点?
112 | 什么是文档情感分类?
113 | 如何来提取情感“实体”和“方面”呢?
计算机视觉核心技术 (0讲)
该章节暂未更新内容,敬请期待
数据科学家与数据科学团队养成 (15讲)
127 | 数据科学家基础能力之概率统计
128 | 数据科学家基础能力之机器学习
129 | 数据科学家基础能力之系统
130 | 数据科学家高阶能力之分析产品
131 | 数据科学家高阶能力之评估产品
132 | 数据科学家高阶能力之如何系统提升产品性能
133 | 职场话题:当数据科学家遇见产品团队
134 | 职场话题:数据科学家应聘要具备哪些能力?
135 | 职场话题:聊聊数据科学家的职场规划
136 | 如何组建一个数据科学团队?
137 | 数据科学团队养成:电话面试指南
138 | 数据科学团队养成:Onsite面试面面观
139 | 成为“香饽饽”的数据科学家,如何衡量他们的工作呢?
140 | 人工智能领域知识体系更新周期只有5~6年,数据科学家如何培养?
141 | 数据科学家团队组织架构:水平还是垂直,这是个问题
热点话题讨论 (2讲)
151 | 精读AlphaGo Zero论文
152 | 2017人工智能技术发展盘点
结束语 (0讲)
该章节暂未更新内容,敬请期待
AI技术内参
登录|注册

154 | 在人工智能领域,如何快速找到学习的切入点?

洪亮劼 2018-09-21

到现在,我们专栏的人工智能核心技术模块就已经全部介绍完了,我们讲了推荐系统、搜索系统、广告系统、自然语言处理及文本挖掘、计算机视觉这五大模块。相信你对这些领域都有了一个最基本的认识。同时,我们还对一些前沿领域的学术会议进行了专项的讨论,和你分享了一些读论文的经验。

这个过程中,我收到了很多反馈,在人工智能领域,面对日新月异的新模型、新方法、新思路,很多人都感到非常难找到切入点来学习和提高。那么,今天我就来分享一下如何快速入门人工智能领域,帮你找到一些学习的捷径。

关注知识主干

我们已经介绍了这么多知识模块,不知道你是否注意到,在每个人工智能的子领域里,真正的知识主干其实是非常有限的。我这里说的“主干”是指构成这个子领域的重要的假设、思路和方法。如果你能够掌握这些主干的内容,那么也就能够相对容易地了解其他枝节信息了。

之所以要了解主干内容,还有一个原因。从时间这个尺度上来看,有一些技术和思想在某个时期曾经有很大的影响力,但是随着时间的变化,它们会被后来更新的技术所取代。因此,只抓主干,也会比较容易看清楚不同类型的技术的时效性。

那么,我们怎么去了解什么是知识主干呢?

对于比较成熟的子领域,或者是传统领域,我们可以依靠教科书。一说起教科书,很多人的第一反应就是枯燥。确实,教科书对于很多知识点的描述过于细节,但是从大的知识块上来讲,教科书还是能够帮助初学者尽快把握重要的知识主干,是一个非常高效的途径。

© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《AI技术内参》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(3)

  • 黄德平
    思考题的思考。
    学习需要考虑目的,目的决定学习内容和方式。对于一个需要今后经常使用的模型,底层数学一定要弄清楚,基础决定大厦的高度。对于只是想知道核心概念的模型,了解基本信息就够了,我们可以用这种方法了解许多方法的大概信息。
    2019-01-05
    1
  • sky
    这一期的内容太赞了,目前就是已经被各种新模型新方法搞的人很焦虑,刚入门,不知道接下来怎么学
    2018-09-21
    1
  • hallo128
    根据你的当前任务或问题,先大概知道新模型是否能有助于自己的问题解决或改进,可以多搜索一些内容判断。当你感到新模型能为你的问题提供一些新的思路,甚至想要更详细了解,那就可以吃透它,应用到自己的问题或者提出自己的改进。
    2019-01-22
收起评论
3
返回
顶部