程序员的数学基础课
黄申
LinkedIn资深数据科学家
立即订阅
23331 人已学习
课程目录
已完结 57 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 作为程序员,为什么你应该学好数学?
免费
导读 (1讲)
导读:程序员应该怎么学数学?
基础思想篇 (18讲)
01 | 二进制:不了解计算机的源头,你学什么编程
02 | 余数:原来取余操作本身就是个哈希函数
03 | 迭代法:不用编程语言的自带函数,你会如何计算平方根?
04 | 数学归纳法:如何用数学归纳提升代码的运行效率?
05 | 递归(上):泛化数学归纳,如何将复杂问题简单化?
06 | 递归(下):分而治之,从归并排序到MapReduce
07 | 排列:如何让计算机学会“田忌赛马”?
08 | 组合:如何让计算机安排世界杯的赛程?
09 | 动态规划(上):如何实现基于编辑距离的查询推荐?
10 | 动态规划(下):如何求得状态转移方程并进行编程实现?
11 | 树的深度优先搜索(上):如何才能高效率地查字典?
12 | 树的深度优先搜索(下):如何才能高效率地查字典?
13 | 树的广度优先搜索(上):人际关系的六度理论是真的吗?
14 | 树的广度优先搜索(下):为什么双向广度优先搜索的效率更高?
15 | 从树到图:如何让计算机学会看地图?
16 | 时间和空间复杂度(上):优化性能是否只是“纸上谈兵”?
17 | 时间和空间复杂度(下):如何使用六个法则进行复杂度分析?
18 | 总结课:数据结构、编程语句和基础算法体现了哪些数学思想?
概率统计篇 (14讲)
19 | 概率和统计:编程为什么需要概率和统计?
20 | 概率基础(上):一篇文章帮你理解随机变量、概率分布和期望值
21 | 概率基础(下):联合概率、条件概率和贝叶斯法则,这些概率公式究竟能做什么?
22 | 朴素贝叶斯:如何让计算机学会自动分类?
23 | 文本分类:如何区分特定类型的新闻?
24 | 语言模型:如何使用链式法则和马尔科夫假设简化概率模型?
25 | 马尔科夫模型:从PageRank到语音识别,背后是什么模型在支撑?
26 | 信息熵:如何通过几个问题,测出你对应的武侠人物?
27 | 决策树:信息增益、增益比率和基尼指数的运用
28 | 熵、信息增益和卡方:如何寻找关键特征?
29 | 归一化和标准化:各种特征如何综合才是最合理的?
30 | 统计意义(上):如何通过显著性检验,判断你的A/B测试结果是不是巧合?
31 | 统计意义(下):如何通过显著性检验,判断你的A/B测试结果是不是巧合?
32 | 概率统计篇答疑和总结:为什么会有欠拟合和过拟合?
线性代数篇 (13讲)
33 | 线性代数:线性代数到底都讲了些什么?
34 | 向量空间模型:如何让计算机理解现实事物之间的关系?
35 | 文本检索:如何让计算机处理自然语言?
36 | 文本聚类:如何过滤冗余的新闻?
37 | 矩阵(上):如何使用矩阵操作进行PageRank计算?
38 | 矩阵(下):如何使用矩阵操作进行协同过滤推荐?
39 | 线性回归(上):如何使用高斯消元求解线性方程组?
40 | 线性回归(中):如何使用最小二乘法进行直线拟合?
41 | 线性回归(下):如何使用最小二乘法进行效果验证?
42 | PCA主成分分析(上):如何利用协方差矩阵来降维?
43 | PCA主成分分析(下):为什么要计算协方差矩阵的特征值和特征向量?
44 | 奇异值分解:如何挖掘潜在的语义关系?
45 | 线性代数篇答疑和总结:矩阵乘法的几何意义是什么?
综合应用篇 (6讲)
46 | 缓存系统:如何通过哈希表和队列实现高效访问?
47 | 搜索引擎(上):如何通过倒排索引和向量空间模型,打造一个简单的搜索引擎?
48 | 搜索引擎(下):如何通过查询的分类,让电商平台的搜索结果更相关?
49 | 推荐系统(上):如何实现基于相似度的协同过滤?
50 | 推荐系统(下):如何通过SVD分析用户和物品的矩阵?
51 | 综合应用篇答疑和总结:如何进行个性化用户画像的设计?
加餐 (3讲)
数学专栏课外加餐(一) | 我们为什么需要反码和补码?
数学专栏课外加餐(二) | 位操作的三个应用实例
数学专栏课外加餐(三):程序员需要读哪些数学书?
结束语 (1讲)
结束语 | 从数学到编程,本身就是一个很长的链条
程序员的数学基础课
登录|注册

44 | 奇异值分解:如何挖掘潜在的语义关系?

黄申 2019-03-27
你好,我是黄申。
今天,我们来聊另一种降维的方法,SVD 奇异值分解(Singular Value Decomposition)。它的核心思路和 PCA 不同。PCA 是通过分析不同纬特征之间的协方差,找到包含最多信息量的特征向量,从而实现降维。而 SVD 这种方法试图通过样本矩阵本身的分解,找到一些“潜在的因素”,然后通过把原始的特征维度映射到较少的潜在因素之上,达到降维的目的。
这个方法的思想和步骤有些复杂,它的核心是矩阵分解,首先,让我们从方阵的矩阵分解开始。

方阵的特征分解

在解释方阵的分解时,我们会用到两个你可能不太熟悉的概念:方阵和酉矩阵。为了让你更顺畅的理解整个分解的过程,我先给你解释下这两个概念。
方阵(Square Matrix)是一种特殊的矩阵,它的行数和列数相等。如果一个矩阵的行数和列数都是 n,那么我们把它称作 n 阶方阵。
如果一个矩阵和其转置矩阵相乘得到的是单位矩阵,那么它就是一个酉矩阵(Unitary Matrix)。
其中 X’表示 X 的转置,I 表示单位矩阵。换句话说,矩阵 X 为酉矩阵的充分必要条件是 X 的转置矩阵和 X 的逆矩阵相等。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《程序员的数学基础课》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(3)

  • Paul Shan
    文档例子和svd分解有差别,svd是左右为方阵,中间为非方阵。文档例子是中间为方阵,左右为方阵,我感觉这里缺了一步,是不是文档的例子已经是降维后的结果了?

    作者回复: 你是指最后的文档集合的那个例子?对,这是分解后的结果

    2019-10-11
  • Paul Shan
    方阵分解成正交阵 x 对角阵 x 正交阵转置
    非方阵也可以做类似分解
    这里的对角阵参数的大小反映了重组后分量的信息量
    2019-10-11
  • qinggeouye
    import numpy as np
    from numpy import linalg as la

    # 文档集合 文档和词条关系矩阵 行表示文档 列表示词条
    x = np.mat([[1, 1, 1, 0, 0], [2, 2, 2, 0, 0],
                [1, 1, 1, 0, 0], [5, 5, 5, 0, 5],
                [0, 0, 0, 2, 2], [0, 0, 0, 3, 3],
                [0, 0, 0, 1, 1]])

    U, sigma, VT = la.svd(x)
    print(U, "\n")
    print(sigma, "\n")
    print(VT, "\n")

    S = np.zeros((7, 5)) # 奇异矩阵
    for i in range(len(sigma)):
        S[i, i] = sigma[i]

    print(" 与矩阵 x 一致? \n", U.dot(S).dot(VT.transpose()))

    这里计算出的左奇异矩阵、奇异值矩阵、右奇异值矩阵,以及它们的点乘,与本文中的都不太一样,不知哪里出问题了?

    作者回复: 你原来的代码里有两个误输入,
    1. x矩阵中的[5, 5, 5, 0, 5]应该是[5, 5, 5, 0, 0]
    2.print(" 与矩阵 x 一致? \n", U.dot(S).dot(VT.transpose()))应该是print(" 与矩阵 x 一致? \n", U.dot(S).dot(VT)),这里VT已经转置过了。

    这样得到的奇异值是[9.64365076e+00 5.29150262e+00 7.52989891e-16 0.00000000e+00
     0.00000000e+00],后面3个接近0,忽略不计

    2019-04-03
    1
收起评论
3
返回
顶部