程序员的数学基础课
黄申
LinkedIn资深数据科学家
立即订阅
23306 人已学习
课程目录
已完结 57 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 作为程序员,为什么你应该学好数学?
免费
导读 (1讲)
导读:程序员应该怎么学数学?
基础思想篇 (18讲)
01 | 二进制:不了解计算机的源头,你学什么编程
02 | 余数:原来取余操作本身就是个哈希函数
03 | 迭代法:不用编程语言的自带函数,你会如何计算平方根?
04 | 数学归纳法:如何用数学归纳提升代码的运行效率?
05 | 递归(上):泛化数学归纳,如何将复杂问题简单化?
06 | 递归(下):分而治之,从归并排序到MapReduce
07 | 排列:如何让计算机学会“田忌赛马”?
08 | 组合:如何让计算机安排世界杯的赛程?
09 | 动态规划(上):如何实现基于编辑距离的查询推荐?
10 | 动态规划(下):如何求得状态转移方程并进行编程实现?
11 | 树的深度优先搜索(上):如何才能高效率地查字典?
12 | 树的深度优先搜索(下):如何才能高效率地查字典?
13 | 树的广度优先搜索(上):人际关系的六度理论是真的吗?
14 | 树的广度优先搜索(下):为什么双向广度优先搜索的效率更高?
15 | 从树到图:如何让计算机学会看地图?
16 | 时间和空间复杂度(上):优化性能是否只是“纸上谈兵”?
17 | 时间和空间复杂度(下):如何使用六个法则进行复杂度分析?
18 | 总结课:数据结构、编程语句和基础算法体现了哪些数学思想?
概率统计篇 (14讲)
19 | 概率和统计:编程为什么需要概率和统计?
20 | 概率基础(上):一篇文章帮你理解随机变量、概率分布和期望值
21 | 概率基础(下):联合概率、条件概率和贝叶斯法则,这些概率公式究竟能做什么?
22 | 朴素贝叶斯:如何让计算机学会自动分类?
23 | 文本分类:如何区分特定类型的新闻?
24 | 语言模型:如何使用链式法则和马尔科夫假设简化概率模型?
25 | 马尔科夫模型:从PageRank到语音识别,背后是什么模型在支撑?
26 | 信息熵:如何通过几个问题,测出你对应的武侠人物?
27 | 决策树:信息增益、增益比率和基尼指数的运用
28 | 熵、信息增益和卡方:如何寻找关键特征?
29 | 归一化和标准化:各种特征如何综合才是最合理的?
30 | 统计意义(上):如何通过显著性检验,判断你的A/B测试结果是不是巧合?
31 | 统计意义(下):如何通过显著性检验,判断你的A/B测试结果是不是巧合?
32 | 概率统计篇答疑和总结:为什么会有欠拟合和过拟合?
线性代数篇 (13讲)
33 | 线性代数:线性代数到底都讲了些什么?
34 | 向量空间模型:如何让计算机理解现实事物之间的关系?
35 | 文本检索:如何让计算机处理自然语言?
36 | 文本聚类:如何过滤冗余的新闻?
37 | 矩阵(上):如何使用矩阵操作进行PageRank计算?
38 | 矩阵(下):如何使用矩阵操作进行协同过滤推荐?
39 | 线性回归(上):如何使用高斯消元求解线性方程组?
40 | 线性回归(中):如何使用最小二乘法进行直线拟合?
41 | 线性回归(下):如何使用最小二乘法进行效果验证?
42 | PCA主成分分析(上):如何利用协方差矩阵来降维?
43 | PCA主成分分析(下):为什么要计算协方差矩阵的特征值和特征向量?
44 | 奇异值分解:如何挖掘潜在的语义关系?
45 | 线性代数篇答疑和总结:矩阵乘法的几何意义是什么?
综合应用篇 (6讲)
46 | 缓存系统:如何通过哈希表和队列实现高效访问?
47 | 搜索引擎(上):如何通过倒排索引和向量空间模型,打造一个简单的搜索引擎?
48 | 搜索引擎(下):如何通过查询的分类,让电商平台的搜索结果更相关?
49 | 推荐系统(上):如何实现基于相似度的协同过滤?
50 | 推荐系统(下):如何通过SVD分析用户和物品的矩阵?
51 | 综合应用篇答疑和总结:如何进行个性化用户画像的设计?
加餐 (3讲)
数学专栏课外加餐(一) | 我们为什么需要反码和补码?
数学专栏课外加餐(二) | 位操作的三个应用实例
数学专栏课外加餐(三):程序员需要读哪些数学书?
结束语 (1讲)
结束语 | 从数学到编程,本身就是一个很长的链条
程序员的数学基础课
登录|注册

数学专栏课外加餐(三):程序员需要读哪些数学书?

黄申 2019-01-25
你好,我是黄申。欢迎来到第三次加餐时间!之前很多同学问我能否推荐一些数学方面的书,今天我就来分享几本。
数学领域涉及的面很广,相关的书籍也很多。咱们这个专栏我从数学的三个主要方面,介绍程序员常用的数学知识,包括离散数学、概率和统计和线性代数。所以我还是围绕这个专栏的三大模块,来给你推荐相应的书籍。

基础思想篇推荐书籍:《离散数学及其应用》

第一模块是“基础思想篇”。这一模块,我尝试用实际项目中的案例,把不同的离散数学知识点串了起来,并加以解释。如果你对其中某些点,有更深的兴趣,可以参考 Kenneth H·Rosen 所著的《离散数学及其应用》,英文原名是
这本书是国外高校的教材,对所有离散数学的知识点介绍的比较全面。咱们讲过的同余定理、数学归纳法、递归、分治算法、排列和组合、树和树的遍历、图和最短路径、逻辑以及集合等概念,这里面都有非常详细的介绍。我看很多人对这些内容很感兴趣,可以参考这本书的相关章节,深入学习。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《程序员的数学基础课》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(9)

  • Jerry银银
    「读书在精,不在多。我选的这些书,你可能多多少少见过,但是能静下心来读完一本的人可能寥寥无几。我相信,订阅这个专栏的你,一定有颗不甘于平庸的心。你一定有你的目标和追求。开卷有益,坚持下去,学下去、读下去,相信你一定会有所收获!」

    读到这句话,心里荡起了涟漪。随着年龄见涨,我越来越觉得书贵精的重要性。
    2019-01-25
    21
  • 恋恋
    读过《数学之美》和《程序员的数学》,现在开始尝试看更深层次的理论数学书,感谢老师的推荐!
    2019-01-28
    6
  • Yang
    我在国外大学的时候学离散数学就是用的第一本的教材, 确实写的很棒,我学的时候中英文两本一起看。但是,感觉不太建议自学用,因为单看还是太枯燥了,例子又多,需要有老师挑重点才能把一本书拎起来。我觉得更适合当参考资料来用。Coursera 上有离散数学的课,推荐,讲的很快,易懂
    2019-09-02
    3
  • 林铭铭
    老师好,概率统计有没有中文版的书籍推荐?

    作者回复: 浙江大学出版的《概率论与数理统计》第4版
    同济大学出版的《概率论与数理统计》
    这两本还不错

    2019-02-09
    2
  • 老师开头介绍的那几本书,就算不考虑英文障碍,对于基础一般的人来说也有点难把。我当时先买了吴军的数学之美看了两遍,还是能吸收一些的。然后慕名买了thinking java和算法导论,两本差不多有1800多页,看起来很痛苦。我觉得通俗的读物对初学者会好点。

    作者回复: 可以先提纲挈领的看一些,了解脉络,我在后面的专栏中会给你细讲重点

    2019-01-25
    1
  • aoe
    我还是从最简单的读起比较好
    2019-11-29
  • vkingnew
    有没有推荐数据历史发展的书籍?当出现什么问题时候 有了数学的算法,又有什么问题出现 出现了更好的数学知识? 感觉国内缺少这样的书籍

    作者回复: 嗯,好问题,不过这种书不容易写,要旁征博引,我看看有没有讲得比较好的

    2019-09-26
  • Paul Shan
    老师,你如何看Knuth写的几本书,包括具体数学,计算机程序设计艺术等,多谢!

    作者回复: 大牛的书,不敢妄加评论啊😆

    2019-08-28
  • 恋恋
    老师您觉得《具体数学》这本书怎么样呢?适合什么时候看。

    作者回复: 你好,这本书我还没看过,感谢推荐,我看过之后和大家分享一下。目前我看了些目录和简介,感觉更偏数学,和计算机应用远一点。

    2019-01-28
收起评论
9
返回
顶部