左耳听风
陈皓
网名“左耳朵耗子”,资深技术专家,骨灰级程序员
立即订阅
40357 人已学习
课程目录
已完结 108 讲
0/6登录后,你可以任选6讲全文学习。
开篇词 | 洞悉技术的本质,享受科技的乐趣
免费
01 | 程序员如何用技术变现(上)
02 | 程序员如何用技术变现(下)
03 | Equifax信息泄露始末
04 | 从Equifax信息泄露看数据安全
05 | 何为技术领导力?
06 | 如何才能拥有技术领导力?
07 | 推荐阅读:每个程序员都该知道的知识
08 | Go语言,Docker和新技术
09 | 答疑解惑:渴望、热情和选择
10 | 如何成为一个大家愿意追随的Leader?
11 | 程序中的错误处理:错误返回码和异常捕捉
12 | 程序中的错误处理:异步编程以及我的最佳实践
13 | 魔数 0x5f3759df
14 | 推荐阅读:机器学习101
15 | 时间管理:同扭曲时间的事儿抗争
16 | 时间管理:如何利用好自己的时间?
17 | 故障处理最佳实践:应对故障
18 | 故障处理最佳实践:故障改进
19 | 答疑解惑:我们应该能够识别的表象和本质
20 | Git协同工作流,你该怎么选?
21 | 分布式系统架构的冰与火
22 | 从亚马逊的实践,谈分布式系统的难点
23 | 分布式系统的技术栈
24 | 分布式系统关键技术:全栈监控
25 | 分布式系统关键技术:服务调度
26 | 分布式系统关键技术:流量与数据调度
27 | 洞悉PaaS平台的本质
28 | 推荐阅读:分布式系统架构经典资料
29 | 推荐阅读:分布式数据调度相关论文
30 | 编程范式游记(1)- 起源
31 | 编程范式游记(2)- 泛型编程
32 | 编程范式游记(3) - 类型系统和泛型的本质
33 | 编程范式游记(4)- 函数式编程
34 | 编程范式游记(5)- 修饰器模式
35 | 编程范式游记(6)- 面向对象编程
36 | 编程范式游记(7)- 基于原型的编程范式
37 | 编程范式游记(8)- Go 语言的委托模式
38 | 编程范式游记(9)- 编程的本质
39 | 编程范式游记(10)- 逻辑编程范式
40 | 编程范式游记(11)- 程序世界里的编程范式
41 | 弹力设计篇之“认识故障和弹力设计”
42 | 弹力设计篇之“隔离设计”
43 | 弹力设计篇之“异步通讯设计”
44 | 弹力设计篇之“幂等性设计”
45 | 弹力设计篇之“服务的状态”
46 | 弹力设计篇之“补偿事务”
47 | 弹力设计篇之“重试设计”
48 | 弹力设计篇之“熔断设计”
49 | 弹力设计篇之“限流设计”
50 | 弹力设计篇之“降级设计”
51 | 弹力设计篇之“弹力设计总结”
52 | 管理设计篇之“分布式锁”
53 | 管理设计篇之“配置中心”
54 | 管理设计篇之“边车模式”
55 | 管理设计篇之“服务网格”
56 | 管理设计篇之“网关模式”
57 | 管理设计篇之“部署升级策略”
58 | 性能设计篇之“缓存”
59 | 性能设计篇之“异步处理”
60 | 性能设计篇之“数据库扩展”
61 | 性能设计篇之“秒杀”
62 | 性能设计篇之“边缘计算”
63 | 区块链技术的本质
64 | 区块链技术细节:哈希算法
65 | 区块链技术细节:加密和挖矿
66 | 区块链技术细节:去中心化的共识机制
67 | 区块链技术细节:智能合约
68 | 区块链技术 - 传统金融和虚拟货币
69 | 程序员练级攻略:开篇词
70 | 程序员练级攻略:零基础启蒙
71 | 程序员练级攻略:正式入门
72 | 程序员练级攻略:程序员修养
73 | 程序员练级攻略:编程语言
74 | 程序员练级攻略:理论学科
75 | 程序员练级攻略:系统知识
76 | 程序员练级攻略:软件设计
77 | 程序员练级攻略:Linux系统、内存和网络
78 | 程序员练级攻略:异步I/O模型和Lock-Free编程
79 | 程序员练级攻略:Java底层知识
80 | 程序员练级攻略:数据库
81 | 程序员练级攻略:分布式架构入门
82 | 程序员练级攻略:分布式架构经典图书和论文
83 | 程序员练级攻略:分布式架构工程设计
84 | 程序员练级攻略:微服务
85 | 程序员练级攻略:容器化和自动化运维
86 | 程序员练级攻略:机器学习和人工智能
87 | 程序员练级攻略:前端基础和底层原理
88 | 程序员练级攻略:前端性能优化和框架
89 | 程序员练级攻略:UI/UX设计
90 | 程序员练级攻略:技术资源集散地
91 | 程序员面试攻略:面试前的准备
92 | 程序员面试攻略:面试中的技巧
93 | 程序员面试攻略:面试风格
94 | 程序员面试攻略:实力才是王中王
95 | 高效学习:端正学习态度
96 | 高效学习:源头、原理和知识地图
97 | 高效学习:深度,归纳和坚持实践
98 | 高效学习:如何学习和阅读代码
99 | 高效学习:面对枯燥和量大的知识
左耳听风
登录|注册

62 | 性能设计篇之“边缘计算”

陈皓 2018-05-03
前面我们通过一个秒杀的示例,展示了如何在 CDN 结点上简单地部署小服务,然后就可以完成在数据中心很难完成的事,我想你应该能看到边缘结点的一些威力。今天,我会和你聊聊我所认识的边缘计算,这也是我创业的方向。
首先,一说起边缘计算,网上大多数文章都会说这是和 IoT 相关的一个技术。其实,我觉得这个说法只说对了边缘计算的一部分,边缘计算可以做的事情还有很多很多。
所谓边缘计算,它是相对于数据中心而言。数据中心喜欢把所有的服务放在一个机房里集中处理用户的数据和请求,集中式部署一方面便于管理和运维,另一方面也便于服务间的通讯有一个比较好的网络保障。的确没错。不过,我们依然需要像 CDN 这样的边缘式的内容发布网络,把我们的静态内容推到离用户最近的地方,然后获得更好的性能。
如果我们让 CDN 的这些边缘结点拥有可定制的计算能力,那么就可以像秒杀那样,可以在边缘结点上处理很多事情,从而为我们的数据中心带来更好的性能,更好的扩展性,还有更好的稳定性。而我们的用户也会觉得响应飞快,从而有了更好的用户体验。
下面,让我们来看看为什么边缘计算会变成一个必然的产物。这里,我有两个例子。

为什么要有边缘计算

从趋势上来说

首先,我们得看一下整个时代是怎么发展的。我们处在信息化革命时代,也有人叫数字化革命,总之就是电脑时代。这个时代,把各式各样的信息都给数字化掉,然后交给计算机来处理。所以,我们要清楚地知道,整个计算机发展的本质就是我们人类生活信息化建设的过程
这个过程中,计算机硬件的发展也是非常迅猛的。CPU 的处理速度,硬盘的大小和速度,网络的带宽和速度都在拼命地升级和降价。我们用越来越低的成本,获得越来越快的速度、越来越大的带宽、越来越快的存储……
所有的这一切,其实都是和信息还有数据有关。我们的信息和数据越来越多,越来越大,所以,我们需要更好、更快、更便宜的硬件和基础设施。这个演化过程中,在我参加工作这 20 年来就没有停止过,而且,我也不认为未来会停下来,这个过程只会越来越快。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《左耳听风》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(14)

  • zoo
    "可以看到,十万用户到上亿用户,也就多了 100 倍,为什么服务器需要 1000 倍?完全不是呈线性的关系。" 十万到一亿,用户数也是扩大了1000倍吧?
    2018-05-25
    8
  • 云学
    作者的知识广度真把我从梦中惊醒了,边缘计算确实好
    2018-05-24
    6
  • tl;dr
    一亿除以十万是一千呀,和服务器增长比例一样的吧。
    2018-05-26
    3
  • sayid
    我怎么感觉从原先的CS架构,然后玩BS架构,发现用户量大,玩不下去了,又玩回CS架构了。。。。
    2019-07-31
    2
  • Just4test
    边缘计算不仅用于在大型业务中分担数据中心压力,也可以简单地用于提升用户体验或降低成本。举个简单的例子,某个页面内容是静态的,但需要鉴权。这时候一般采取动态生成页面的方式。但如果使用jwt等无需和db交互的鉴权方式,可以在CDN上做鉴权,页面只需要生成一次,节省了成本。
    2018-05-24
    1
  • Just4test
    边缘计算适合那些无需DB参与的工作,比如根据jwt鉴权,或者数据预处理。
    目前边缘计算的基础设施还显不足,即使是Lambda@Edge这样的商用服务,计算层面能做的也非常有限。不过借助Lambda@Edge,可以把用户请求分发到邻近的数据中心进行预处理,为主数据中心分担压力。通过CloudFormation StackSet,可以把业务一次部署到全球的多个Region。
    另外,现在腾讯云也在公测CDN Edge服务。
    2018-05-24
    1
  • Dimple
    终于 把耗子哥的这个系列跟完了,看到后来,越来越爽,越来越舒服。就是还有很大的实践难度,现在的量级没跟上,实践起来还有点困难。
    2019-08-26
  • 明明
    这个10万,百万,千万用户指的是DAU吗?
    2019-08-07
  • edisonhuang
    随着用户规模的扩大,数据量大增,而大家对服务响应的实时性也越来越高,这两点需求让边缘计算成为必然,同时从成本上来说,边缘计算相对数据中心成本也会更低。
    对于一些基于地理位置数据为核心的服务,边缘计算就很适合,例如外卖打车等。
    边缘计算涉及到的关键技术包括网关和Serveless,让每个功能否微服务化是关键
    2019-07-26
  • 阿汤
    这个是不是有点像Set化的概念
    2019-05-29
  • 付正立
    不要被“智能合约”中的“智能”欺骗了:这里的智能,只是不需要人工执行的意思。
    2019-05-28
  • caohuan
    听二遍 边缘计算,还没明白它是什么,能干什么,以及具体的使用场景 ,在没有基础的情况下,不能跳跃 应该从 分布式开始 一节节的听,还有认真学习应该往后看第97节 的系统学习的六个关键步骤,并填充它,顺便膜拜下 耗子哥 在技术领域的广度和深度的造诣。
    2018-10-26
  • Geek_516ab1
    "可以看到,十万用户到上亿用户,也就多了 100 倍,为什么服务器需要 1000 倍"

    十万的一千倍是亿!

    另外感觉人越多其实计算资源可以更优化
    2018-06-07
  • AlphaZero
    不知道耗子叔如何看待我们公司的边缘计算产品 Cloudflare (Edge) Workers?
    2018-05-29
收起评论
14
返回
顶部