深入浅出计算机组成原理
徐文浩
bothub创始人
立即订阅
13019 人已学习
课程目录
已完结 62 讲
0/4登录后,你可以任选4讲全文学习。
入门篇 (5讲)
开篇词 | 为什么你需要学习计算机组成原理?
免费
01 | 冯·诺依曼体系结构:计算机组成的金字塔
02 | 给你一张知识地图,计算机组成原理应该这么学
03 | 通过你的CPU主频,我们来谈谈“性能”究竟是什么?
04 | 穿越功耗墙,我们该从哪些方面提升“性能”?
原理篇:指令和运算 (12讲)
05 | 计算机指令:让我们试试用纸带编程
06 | 指令跳转:原来if...else就是goto
07 | 函数调用:为什么会发生stack overflow?
08 | ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?
09 | 程序装载:“640K内存”真的不够用么?
10 | 动态链接:程序内部的“共享单车”
11 | 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?
12 | 理解电路:从电报机到门电路,我们如何做到“千里传信”?
13 | 加法器:如何像搭乐高一样搭电路(上)?
14 | 乘法器:如何像搭乐高一样搭电路(下)?
15 | 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?
16 | 浮点数和定点数(下):深入理解浮点数到底有什么用?
原理篇:处理器 (18讲)
17 | 建立数据通路(上):指令+运算=CPU
18 | 建立数据通路(中):指令+运算=CPU
19 | 建立数据通路(下):指令+运算=CPU
20 | 面向流水线的指令设计(上):一心多用的现代CPU
21 | 面向流水线的指令设计(下):奔腾4是怎么失败的?
22 | 冒险和预测(一):hazard是“危”也是“机”
23 | 冒险和预测(二):流水线里的接力赛
24 | 冒险和预测(三):CPU里的“线程池”
25 | 冒险和预测(四):今天下雨了,明天还会下雨么?
26 | Superscalar和VLIW:如何让CPU的吞吐率超过1?
27 | SIMD:如何加速矩阵乘法?
28 | 异常和中断:程序出错了怎么办?
29 | CISC和RISC:为什么手机芯片都是ARM?
30 | GPU(上):为什么玩游戏需要使用GPU?
31 | GPU(下):为什么深度学习需要使用GPU?
32 | FPGA和ASIC:计算机体系结构的黄金时代
33 | 解读TPU:设计和拆解一块ASIC芯片
34 | 理解虚拟机:你在云上拿到的计算机是什么样的?
原理篇:存储与I/O系统 (17讲)
35 | 存储器层次结构全景:数据存储的大金字塔长什么样?
36 | 局部性原理:数据库性能跟不上,加个缓存就好了?
37 | 高速缓存(上):“4毫秒”究竟值多少钱?
38 | 高速缓存(下):你确定你的数据更新了么?
39 | MESI协议:如何让多核CPU的高速缓存保持一致?
40 | 理解内存(上):虚拟内存和内存保护是什么?
41 | 理解内存(下):解析TLB和内存保护
42 | 总线:计算机内部的高速公路
43 | 输入输出设备:我们并不是只能用灯泡显示“0”和“1”
44 | 理解IO_WAIT:I/O性能到底是怎么回事儿?
45 | 机械硬盘:Google早期用过的“黑科技”
46 | SSD硬盘(上):如何完成性能优化的KPI?
47 | SSD硬盘(下):如何完成性能优化的KPI?
48 | DMA:为什么Kafka这么快?
49 | 数据完整性(上):硬件坏了怎么办?
50 | 数据完整性(下):如何还原犯罪现场?
51 | 分布式计算:如果所有人的大脑都联网会怎样?
应用篇 (5讲)
52 | 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药
53 | 设计大型DMP系统(下):SSD拯救了所有的DBA
54 | 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣
55 | 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?
结束语 | 知也无涯,愿你也享受发现的乐趣
免费
答疑与加餐 (5讲)
特别加餐 | 我在2019年F8大会的两日见闻录
FAQ第一期 | 学与不学,知识就在那里,不如就先学好了
用户故事 | 赵文海:怕什么真理无穷,进一寸有一寸的欢喜
FAQ第二期 | 世界上第一个编程语言是怎么来的?
特别加餐 | 我的一天怎么过?
深入浅出计算机组成原理
登录|注册

41 | 理解内存(下):解析TLB和内存保护

徐文浩 2019-07-29
机器指令里面的内存地址都是虚拟内存地址。程序里面的每一个进程,都有一个属于自己的虚拟内存地址空间。我们可以通过地址转换来获得最终的实际物理地址。我们每一个指令都存放在内存里面,每一条数据都存放在内存里面。因此,“地址转换”是一个非常高频的动作,“地址转换”的性能就变得至关重要了。这就是我们今天要讲的第一个问题,也就是性能问题
因为我们的指令、数据都存放在内存里面,这里就会遇到我们今天要谈的第二个问题,也就是内存安全问题。如果被人修改了内存里面的内容,我们的 CPU 就可能会去执行我们计划之外的指令。这个指令可能是破坏我们服务器里面的数据,也可能是被人获取到服务器里面的敏感信息。
现代的 CPU 和操作系统,会通过什么样的方式来解决这两个问题呢?别着急,等讲完今天的内容,你就知道答案了。

加速地址转换:TLB

上一节我们说了,从虚拟内存地址到物理内存地址的转换,我们通过页表这个数据结构来处理。为了节约页表的内存存储空间,我们会使用多级页表数据结构。
不过,多级页表虽然节约了我们的存储空间,但是却带来了时间上的开销,变成了一个“以时间换空间”的策略。原本我们进行一次地址转换,只需要访问一次内存就能找到物理页号,算出物理内存地址。但是用了 4 级页表,我们就需要访问 4 次内存,才能找到物理页号。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《深入浅出计算机组成原理》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(10)

  • 免费的人
    linux下 内存空间随机化是否开启 是有配置的吗 还是跟内核版本有关?
    2019-07-29
    1
    5
  • 焰火
    地址空间布局随机化。虽然进程里的段乱序了,但是他的虚拟地址和乱序前没有改变吧,只是又多了一层地址转换而已?这样理解对么?

    作者回复: 焰火同学,

    你好,不是的。虚拟内存空间的布局发生变化了。因为如果通过程序或者系统漏洞往进程里面注入代码,针对改写的也是虚拟内存地址,所以虚拟内存地址的布局是发生了变化的。而不是虚拟到物理之间多做一层转化,因为物理内存地址的分配本来就不是固定的,相当于已经随机化过了。

    2019-09-20
    3
  • 追风筝的人
    绍了最常用的两个内存保护措施,可执行空间保护和地址空间布局随机化。
    2019-11-18
  • 拓山
    如果是这个salt是保存在db中,这个随机化策略只是增加了黑客的破解成本,并非完全安全。
    一个解决方案是将一个从密码机生成的秘钥通过算法将其生成为一个安全图片,同时提供一个sdk来封装对安全图片的读取,并提供加解密方法。
    业务方每次加解密时,调用sdk来做加解密,这样秘钥就不会落盘,不会有日志记录。安全性得到极大提升

    2019-10-24
  • 不一样的烟火
    地址随机化后不再局部 是不是牺牲了效率
    2019-10-20
  • zaab
    想通了一个问题: 你知道sql里面不用sql拼接 而使用占位符可以防止sql注入攻击吧
    那么为什么使用占位符可以防止攻击呢 我没想明白。
    简单来说就是将占位符当成数据解析 而不当作指令解析, 不管这个占位符给得什么 我都把它当成是数据 而不会是指令
    2019-10-12
  • 活的潇洒
    局部性原理应用的淋漓尽致
    day41 笔记:https://www.cnblogs.com/luoahong/p/11385395.html
    2019-08-21
  • Geek_7f28ff
    老师,最近也在学习计算机网络,能不能推荐一下,这方面的书籍和好点的视频,趣味网络协议已经买了。
    2019-07-30
  • 许童童
    老师你好,TLB的原理给多介绍一下吗?
    2019-07-29
  • xta0
    问一下,对于使用salt加密的策略,salt是需要存入数据库的吧?这样当用户登录时,先取出salt,然后重新计算hash值进行比对?
    2019-07-29
    5
收起评论
10
返回
顶部