深入浅出计算机组成原理
徐文浩
bothub创始人
立即订阅
13019 人已学习
课程目录
已完结 62 讲
0/4登录后,你可以任选4讲全文学习。
入门篇 (5讲)
开篇词 | 为什么你需要学习计算机组成原理?
免费
01 | 冯·诺依曼体系结构:计算机组成的金字塔
02 | 给你一张知识地图,计算机组成原理应该这么学
03 | 通过你的CPU主频,我们来谈谈“性能”究竟是什么?
04 | 穿越功耗墙,我们该从哪些方面提升“性能”?
原理篇:指令和运算 (12讲)
05 | 计算机指令:让我们试试用纸带编程
06 | 指令跳转:原来if...else就是goto
07 | 函数调用:为什么会发生stack overflow?
08 | ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?
09 | 程序装载:“640K内存”真的不够用么?
10 | 动态链接:程序内部的“共享单车”
11 | 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?
12 | 理解电路:从电报机到门电路,我们如何做到“千里传信”?
13 | 加法器:如何像搭乐高一样搭电路(上)?
14 | 乘法器:如何像搭乐高一样搭电路(下)?
15 | 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?
16 | 浮点数和定点数(下):深入理解浮点数到底有什么用?
原理篇:处理器 (18讲)
17 | 建立数据通路(上):指令+运算=CPU
18 | 建立数据通路(中):指令+运算=CPU
19 | 建立数据通路(下):指令+运算=CPU
20 | 面向流水线的指令设计(上):一心多用的现代CPU
21 | 面向流水线的指令设计(下):奔腾4是怎么失败的?
22 | 冒险和预测(一):hazard是“危”也是“机”
23 | 冒险和预测(二):流水线里的接力赛
24 | 冒险和预测(三):CPU里的“线程池”
25 | 冒险和预测(四):今天下雨了,明天还会下雨么?
26 | Superscalar和VLIW:如何让CPU的吞吐率超过1?
27 | SIMD:如何加速矩阵乘法?
28 | 异常和中断:程序出错了怎么办?
29 | CISC和RISC:为什么手机芯片都是ARM?
30 | GPU(上):为什么玩游戏需要使用GPU?
31 | GPU(下):为什么深度学习需要使用GPU?
32 | FPGA和ASIC:计算机体系结构的黄金时代
33 | 解读TPU:设计和拆解一块ASIC芯片
34 | 理解虚拟机:你在云上拿到的计算机是什么样的?
原理篇:存储与I/O系统 (17讲)
35 | 存储器层次结构全景:数据存储的大金字塔长什么样?
36 | 局部性原理:数据库性能跟不上,加个缓存就好了?
37 | 高速缓存(上):“4毫秒”究竟值多少钱?
38 | 高速缓存(下):你确定你的数据更新了么?
39 | MESI协议:如何让多核CPU的高速缓存保持一致?
40 | 理解内存(上):虚拟内存和内存保护是什么?
41 | 理解内存(下):解析TLB和内存保护
42 | 总线:计算机内部的高速公路
43 | 输入输出设备:我们并不是只能用灯泡显示“0”和“1”
44 | 理解IO_WAIT:I/O性能到底是怎么回事儿?
45 | 机械硬盘:Google早期用过的“黑科技”
46 | SSD硬盘(上):如何完成性能优化的KPI?
47 | SSD硬盘(下):如何完成性能优化的KPI?
48 | DMA:为什么Kafka这么快?
49 | 数据完整性(上):硬件坏了怎么办?
50 | 数据完整性(下):如何还原犯罪现场?
51 | 分布式计算:如果所有人的大脑都联网会怎样?
应用篇 (5讲)
52 | 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药
53 | 设计大型DMP系统(下):SSD拯救了所有的DBA
54 | 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣
55 | 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?
结束语 | 知也无涯,愿你也享受发现的乐趣
免费
答疑与加餐 (5讲)
特别加餐 | 我在2019年F8大会的两日见闻录
FAQ第一期 | 学与不学,知识就在那里,不如就先学好了
用户故事 | 赵文海:怕什么真理无穷,进一寸有一寸的欢喜
FAQ第二期 | 世界上第一个编程语言是怎么来的?
特别加餐 | 我的一天怎么过?
深入浅出计算机组成原理
登录|注册

32 | FPGA和ASIC:计算机体系结构的黄金时代

徐文浩 2019-07-08
过去很长一段时间里,大家在讲到高科技、互联网、信息技术的时候,谈的其实都是“软件”。从 1995 年微软发布 Windows 95 开始,高科技似乎就等同于软件业和互联网。著名的风险投资基金 Andreessen Horowitz 的合伙人 Marc Andreessen,在 2011 年发表了一篇博客,声称“Software is Eating the World”。Marc Andreessen,不仅是投资人,更是 Netscape 的创始人之一。他当时的搭档就是我们在前两讲提过的 SGI 创始人 Jim Clark。
的确,过去 20 年计算机工业界的中心都在软件上。似乎硬件对大家来说,慢慢变成了一个黑盒子。虽然必要,但却显得有点无关紧要。
不过,在上世纪 70~80 年代,计算机的世界可不是这样的。那个时候,计算机工业届最激动人心的,是层出不穷的硬件。无论是 Intel 的 8086,还是摩托罗拉的 68000,这样用于个人电脑的 CPU,还是直到今天大家还会提起的 Macintosh,还有史上最畅销的计算机 Commodore 64,都是在那个时代被创造出来的。
电视剧 Halt and Catch Fire,灵感应该就是来自第一台笔记本电脑 Compaq Portable 的诞生
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《深入浅出计算机组成原理》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(8)

  • Sentry
    老师,有空给我们讲讲哈佛体系结构吧……
    2019-07-08
    2
    4
  • LDxy
    学习FPGA给我印象最深的是,编写FPGA代码需要完全不同于任何一种软件编程语言的思路,因为所有的可执行语句在FPGA中都是并行执行的。编写FPGA代码时若不彻底抛弃以往的软件编写思维方式,你可能连一个最简单的功能都写不出
    2019-07-08
    2
  • 张三
    学到后边,人越来越少了,看来已经成功一半了,哈哈哈
    2019-11-30
  • Jason
    RISC-V
    2019-11-23
  • 阿木林
    老师,在设计和实验阶段用FPGA,等方案敲定了,再制作ASIC大规模生产,是不是最优的选择?
    2019-10-30
  • 活的潇洒
    “这个可编程逻辑布线,你可以把它当成我们的铁路网。整个铁路系统已经铺好了,
    但是整个铁路网里面,设计了很多个道岔。我们可以通过控制道岔,来确定不同的列车线路。在可编程逻辑布线里面,“编程”在做的,就是拨动像道岔一样的各个电路开关,最终实现不同CLB之间的连接,完成我们想要的芯片功能。” 我的第一专业就是铁道信号,老师的这个比喻恨到位

    day32 天笔记:https://www.cnblogs.com/luoahong/p/11424314.html
    2019-09-02
  • LDxy
    又回忆起了大学时的FPGA课程
    2019-07-08
  • 靠人品去赢
    老师是不是这两种,只适合那种硬件自己给自己适配的芯片,上限很低的那种?因为现在看一些智能家居,芯片都用上ARM了。
    2019-07-08
收起评论
8
返回
顶部