深入浅出计算机组成原理
徐文浩
bothub创始人
立即订阅
13019 人已学习
课程目录
已完结 62 讲
0/4登录后,你可以任选4讲全文学习。
入门篇 (5讲)
开篇词 | 为什么你需要学习计算机组成原理?
免费
01 | 冯·诺依曼体系结构:计算机组成的金字塔
02 | 给你一张知识地图,计算机组成原理应该这么学
03 | 通过你的CPU主频,我们来谈谈“性能”究竟是什么?
04 | 穿越功耗墙,我们该从哪些方面提升“性能”?
原理篇:指令和运算 (12讲)
05 | 计算机指令:让我们试试用纸带编程
06 | 指令跳转:原来if...else就是goto
07 | 函数调用:为什么会发生stack overflow?
08 | ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?
09 | 程序装载:“640K内存”真的不够用么?
10 | 动态链接:程序内部的“共享单车”
11 | 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?
12 | 理解电路:从电报机到门电路,我们如何做到“千里传信”?
13 | 加法器:如何像搭乐高一样搭电路(上)?
14 | 乘法器:如何像搭乐高一样搭电路(下)?
15 | 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?
16 | 浮点数和定点数(下):深入理解浮点数到底有什么用?
原理篇:处理器 (18讲)
17 | 建立数据通路(上):指令+运算=CPU
18 | 建立数据通路(中):指令+运算=CPU
19 | 建立数据通路(下):指令+运算=CPU
20 | 面向流水线的指令设计(上):一心多用的现代CPU
21 | 面向流水线的指令设计(下):奔腾4是怎么失败的?
22 | 冒险和预测(一):hazard是“危”也是“机”
23 | 冒险和预测(二):流水线里的接力赛
24 | 冒险和预测(三):CPU里的“线程池”
25 | 冒险和预测(四):今天下雨了,明天还会下雨么?
26 | Superscalar和VLIW:如何让CPU的吞吐率超过1?
27 | SIMD:如何加速矩阵乘法?
28 | 异常和中断:程序出错了怎么办?
29 | CISC和RISC:为什么手机芯片都是ARM?
30 | GPU(上):为什么玩游戏需要使用GPU?
31 | GPU(下):为什么深度学习需要使用GPU?
32 | FPGA和ASIC:计算机体系结构的黄金时代
33 | 解读TPU:设计和拆解一块ASIC芯片
34 | 理解虚拟机:你在云上拿到的计算机是什么样的?
原理篇:存储与I/O系统 (17讲)
35 | 存储器层次结构全景:数据存储的大金字塔长什么样?
36 | 局部性原理:数据库性能跟不上,加个缓存就好了?
37 | 高速缓存(上):“4毫秒”究竟值多少钱?
38 | 高速缓存(下):你确定你的数据更新了么?
39 | MESI协议:如何让多核CPU的高速缓存保持一致?
40 | 理解内存(上):虚拟内存和内存保护是什么?
41 | 理解内存(下):解析TLB和内存保护
42 | 总线:计算机内部的高速公路
43 | 输入输出设备:我们并不是只能用灯泡显示“0”和“1”
44 | 理解IO_WAIT:I/O性能到底是怎么回事儿?
45 | 机械硬盘:Google早期用过的“黑科技”
46 | SSD硬盘(上):如何完成性能优化的KPI?
47 | SSD硬盘(下):如何完成性能优化的KPI?
48 | DMA:为什么Kafka这么快?
49 | 数据完整性(上):硬件坏了怎么办?
50 | 数据完整性(下):如何还原犯罪现场?
51 | 分布式计算:如果所有人的大脑都联网会怎样?
应用篇 (5讲)
52 | 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药
53 | 设计大型DMP系统(下):SSD拯救了所有的DBA
54 | 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣
55 | 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?
结束语 | 知也无涯,愿你也享受发现的乐趣
免费
答疑与加餐 (5讲)
特别加餐 | 我在2019年F8大会的两日见闻录
FAQ第一期 | 学与不学,知识就在那里,不如就先学好了
用户故事 | 赵文海:怕什么真理无穷,进一寸有一寸的欢喜
FAQ第二期 | 世界上第一个编程语言是怎么来的?
特别加餐 | 我的一天怎么过?
深入浅出计算机组成原理
登录|注册

31 | GPU(下):为什么深度学习需要使用GPU?

徐文浩 2019-07-05
上一讲,我带你一起看了三维图形在计算机里的渲染过程。这个渲染过程,分成了顶点处理、图元处理、 栅格化、片段处理,以及最后的像素操作。这一连串的过程,也被称之为图形流水线或者渲染管线。
因为要实时计算渲染的像素特别地多,图形加速卡登上了历史的舞台。通过 3dFx 的 Voodoo 或者 NVidia 的 TNT 这样的图形加速卡,CPU 就不需要再去处理一个个像素点的图元处理、栅格化和片段处理这些操作。而 3D 游戏也是从这个时代发展起来的。
你可以看这张图,这是“古墓丽影”游戏的多边形建模的变化。这个变化,则是从 1996 年到 2016 年,这 20 年来显卡的进步带来的。

Shader 的诞生和可编程图形处理器

不知道你有没有发现,在 Voodoo 和 TNT 显卡的渲染管线里面,没有“顶点处理“这个步骤。在当时,把多边形的顶点进行线性变化,转化到我们的屏幕的坐标系的工作还是由 CPU 完成的。所以,CPU 的性能越好,能够支持的多边形也就越多,对应的多边形建模的效果自然也就越像真人。而 3D 游戏的多边形性能也受限于我们 CPU 的性能。无论你的显卡有多快,如果 CPU 不行,3D 画面一样还是不行。
所以,1999 年 NVidia 推出的 GeForce 256 显卡,就把顶点处理的计算能力,也从 CPU 里挪到了显卡里。不过,这对于想要做好 3D 游戏的程序员们还不够,即使到了 GeForce 256。整个图形渲染过程都是在硬件里面固定的管线来完成的。程序员们在加速卡上能做的事情呢,只有改配置来实现不同的图形渲染效果。如果通过改配置做不到,我们就没有什么办法了。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《深入浅出计算机组成原理》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(8)

  • 许童童
    算了一下,大概是 16 * 5G = 0.8TFLOPS
    2019-07-05
    3
  • 笑若海
    由此看出,CPU适合做逻辑复杂、小量数据、IO密集这三类运算。
    只要数据量大,即使逻辑复杂,还是值得研究可编程的专门硬件来提高效率,正如GPU的出现。
    IO密集型的场景,由于内存、网卡、硬盘与CPU之间的速率差异,更适合借助中断机制用异步方式实现,提高总体的吞吐率。并借助高速缓存和超线程,进一步提升吞吐率,Web服务就是这种场景。
    2019-08-09
    1
  • 拓山
    徐老师,我理解GPU【执行上下文】的组件多是由于GPU的超线程的数量比CPU多而造成的
    那么你的这句话【最后,为了能够让 GPU 不要遭遇流水线停顿,我们又在同一个 GPU 的计算核里面,加上了更多的执行上下文】是不是指的就是GPU超线程多,可以避免流水线的停顿?
    2019-10-11
  • 活的潇洒
    1、以前只知道深度学习、大数据需要GPU但是底层的原理并不知道?
    2、也不知道GPU的硬件组成和CPU有什么不同?
    听完来时的讲解一下感觉都明白了

    day31天笔记: https://www.cnblogs.com/luoahong/p/11417549.html
    2019-09-02
  • coder
    最新版的GPU Turing架构,加入了Tensor Core,面向深度学习,直接支持矩阵乘法这种相对复杂的运算🌝🌝🌝
    2019-07-05
  • 清秋(翟浩)
    这份讲义都是2011年的了,近8年的GPU发展如何呢,这八年没有任何变化么?
    2019-07-05
  • 拉欧
    技术都是螺旋式发展的,正如 :游戏的发展
    —> GPU技术升级—>深度学习发展
    2019-07-05
  • coder
    徐老师能把haifux.org中的ppt链接贴出来吗,客户端上加载不出来:D
    2019-07-05
    1
收起评论
8
返回
顶部