深入浅出计算机组成原理
徐文浩
bothub创始人
立即订阅
13019 人已学习
课程目录
已完结 62 讲
0/4登录后,你可以任选4讲全文学习。
入门篇 (5讲)
开篇词 | 为什么你需要学习计算机组成原理?
免费
01 | 冯·诺依曼体系结构:计算机组成的金字塔
02 | 给你一张知识地图,计算机组成原理应该这么学
03 | 通过你的CPU主频,我们来谈谈“性能”究竟是什么?
04 | 穿越功耗墙,我们该从哪些方面提升“性能”?
原理篇:指令和运算 (12讲)
05 | 计算机指令:让我们试试用纸带编程
06 | 指令跳转:原来if...else就是goto
07 | 函数调用:为什么会发生stack overflow?
08 | ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?
09 | 程序装载:“640K内存”真的不够用么?
10 | 动态链接:程序内部的“共享单车”
11 | 二进制编码:“手持两把锟斤拷,口中疾呼烫烫烫”?
12 | 理解电路:从电报机到门电路,我们如何做到“千里传信”?
13 | 加法器:如何像搭乐高一样搭电路(上)?
14 | 乘法器:如何像搭乐高一样搭电路(下)?
15 | 浮点数和定点数(上):怎么用有限的Bit表示尽可能多的信息?
16 | 浮点数和定点数(下):深入理解浮点数到底有什么用?
原理篇:处理器 (18讲)
17 | 建立数据通路(上):指令+运算=CPU
18 | 建立数据通路(中):指令+运算=CPU
19 | 建立数据通路(下):指令+运算=CPU
20 | 面向流水线的指令设计(上):一心多用的现代CPU
21 | 面向流水线的指令设计(下):奔腾4是怎么失败的?
22 | 冒险和预测(一):hazard是“危”也是“机”
23 | 冒险和预测(二):流水线里的接力赛
24 | 冒险和预测(三):CPU里的“线程池”
25 | 冒险和预测(四):今天下雨了,明天还会下雨么?
26 | Superscalar和VLIW:如何让CPU的吞吐率超过1?
27 | SIMD:如何加速矩阵乘法?
28 | 异常和中断:程序出错了怎么办?
29 | CISC和RISC:为什么手机芯片都是ARM?
30 | GPU(上):为什么玩游戏需要使用GPU?
31 | GPU(下):为什么深度学习需要使用GPU?
32 | FPGA和ASIC:计算机体系结构的黄金时代
33 | 解读TPU:设计和拆解一块ASIC芯片
34 | 理解虚拟机:你在云上拿到的计算机是什么样的?
原理篇:存储与I/O系统 (17讲)
35 | 存储器层次结构全景:数据存储的大金字塔长什么样?
36 | 局部性原理:数据库性能跟不上,加个缓存就好了?
37 | 高速缓存(上):“4毫秒”究竟值多少钱?
38 | 高速缓存(下):你确定你的数据更新了么?
39 | MESI协议:如何让多核CPU的高速缓存保持一致?
40 | 理解内存(上):虚拟内存和内存保护是什么?
41 | 理解内存(下):解析TLB和内存保护
42 | 总线:计算机内部的高速公路
43 | 输入输出设备:我们并不是只能用灯泡显示“0”和“1”
44 | 理解IO_WAIT:I/O性能到底是怎么回事儿?
45 | 机械硬盘:Google早期用过的“黑科技”
46 | SSD硬盘(上):如何完成性能优化的KPI?
47 | SSD硬盘(下):如何完成性能优化的KPI?
48 | DMA:为什么Kafka这么快?
49 | 数据完整性(上):硬件坏了怎么办?
50 | 数据完整性(下):如何还原犯罪现场?
51 | 分布式计算:如果所有人的大脑都联网会怎样?
应用篇 (5讲)
52 | 设计大型DMP系统(上):MongoDB并不是什么灵丹妙药
53 | 设计大型DMP系统(下):SSD拯救了所有的DBA
54 | 理解Disruptor(上):带你体会CPU高速缓存的风驰电掣
55 | 理解Disruptor(下):不需要换挡和踩刹车的CPU,有多快?
结束语 | 知也无涯,愿你也享受发现的乐趣
免费
答疑与加餐 (5讲)
特别加餐 | 我在2019年F8大会的两日见闻录
FAQ第一期 | 学与不学,知识就在那里,不如就先学好了
用户故事 | 赵文海:怕什么真理无穷,进一寸有一寸的欢喜
FAQ第二期 | 世界上第一个编程语言是怎么来的?
特别加餐 | 我的一天怎么过?
深入浅出计算机组成原理
登录|注册

29 | CISC和RISC:为什么手机芯片都是ARM?

徐文浩 2019-07-01
我在第 5 讲讲计算机指令的时候,给你看过 MIPS 体系结构计算机的机器指令格式。MIPS 的指令都是固定的 32 位长度,如果要用一个打孔卡来表示,并不复杂。
MIPS 机器码的长度都是固定的 32 位
第 6 讲的时候,我带你编译了一些简单的 C 语言程序,看了 x86 体系结构下的汇编代码。眼尖的话,你应该能发现,每一条机器码的长度是不一样的。
Intel x86 的机器码的长度是可变的
而 CPU 的指令集里的机器码是固定长度还是可变长度,也就是复杂指令集(Complex Instruction Set Computing,简称 CISC)和精简指令集(Reduced Instruction Set Computing,简称 RISC)这两种风格的指令集一个最重要的差别。那今天我们就来看复杂指令集和精简指令集之间的对比、差异以及历史纠葛。

CISC VS RISC:历史的车轮不总是向前的

在计算机历史的早期,其实没有什么 CISC 和 RISC 之分。或者说,所有的 CPU 其实都是 CISC。
虽然冯·诺依曼高屋建瓴地提出了存储程序型计算机的基础架构,但是实际的计算机设计和制造还是严格受硬件层面的限制。当时的计算机很慢,存储空间也很小。《人月神话》这本软件工程界的名著,讲的是花了好几年设计 IBM 360 这台计算机的经验。IBM 360 的最低配置,每秒只能运行 34500 条指令,只有 8K 的内存。为了让计算机能够做尽量多的工作,每一个字节乃至每一个比特都特别重要。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《深入浅出计算机组成原理》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(13)

  • Geek_guo
    老师预测的很准,阿里的玄铁就是基于RSIC-v的
    2019-08-06
    5
  • 陈华应
    开阔了视野。另外想插句题外话: 设计思想都是通用的,灵活应用,能选择最适合的才是关键
    2019-07-01
    1
  • xindoo
    atom是面向移动市场的,所以肯定会以低功耗为设计导向,我觉得肯定会大量参考rsic的设计,但atom貌似是可以运行windows的,应该还是x86的指令集。
    2019-07-01
    1
    1
  • 陈志恒
    微指令:由于cpu指令的局部性原理,所以,Intel 就在 CPU 里面加了一层 L0 Cache。这个 Cache 保存的就是指令译码器把 CISC 的指令“翻译”成 RISC 的微指令的结果
    2019-11-28
  • prader
    1 手机用ram 是因为,ram的功耗更低
    2019-09-25
  • 活的潇洒
    看到标题就迫不及待的来看个究竟
    我工作中有用到的虚拟化管理软件有KVM openstack私有云、看了老师内容觉得收获很大给老师一个大大赞
     day34 笔记:https://www.cnblogs.com/luoahong/p/11390256.html
    2019-08-21
  • 活的潇洒
    我工作的这10多年里用的都是Intel 的 x86 CPU、对于ARM只知道是嵌入式、应用才交换机、路由器、智能手机领域,至于到底和Intel 的 x86 CPU底层的实现原理有什么区别我一直都不是很明白,一直有这样的疑问,但是不知道应该去哪里问?正好看到这篇文章我才明白了
    day29 笔记:https://www.cnblogs.com/luoahong/p/11330406.html
    2019-08-21
  • 墨渊战神01
    pc时代有intel, 移动互联网时代有arm,物联网时代是不是会有更低功耗更高效的架构出现?
    2019-07-26
  • zhuanglog
    老师那你觉得ARM芯片最后在性能上会比过Intel的X86嘛?
    2019-07-15
    1
  • 开心
    讲的很精彩
    2019-07-08
  • 靠人品去赢
    这个intel之前的移动端芯片功耗过大而不能像PC端一样处于垄断地位。那问题来了,既然ARM构架在功耗上有优势,本身PC端功耗也是一个大问题(比如什么N卡电表倒转,农厂大火炉这样的梗),那为什么近些年PC端ARM构架没什么作为,是传说中的生态问题导致的吗?感觉以后不同种类终端都会统一起来,执行一个标准,处处运行会是一个趋势吗?
    2019-07-01
    1
  • 有铭
    Atom仍然是X86 CPU,所以它应该还是“带有微指令架构的CISC CPU”。不过Atom基本已经失败了。说明intel在低功耗CPU的设计上积累还是一般
    2019-07-01
  • Sentry
    按老师结尾部分的内容推测,应该是CISC了−−
    2019-07-01
收起评论
13
返回
顶部