机器学习40讲
王天一
工学博士,副教授
立即订阅
8040 人已学习
课程目录
已完结 44 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 打通修炼机器学习的任督二脉
免费
机器学习概观 (10讲)
01 | 频率视角下的机器学习
02 | 贝叶斯视角下的机器学习
03 | 学什么与怎么学
04 | 计算学习理论
05 | 模型的分类方式
06 | 模型的设计准则
07 | 模型的验证方法
08 | 模型的评估指标
09 | 实验设计
10 | 特征预处理
统计机器学习模型 (18讲)
11 | 基础线性回归:一元与多元
12 | 正则化处理:收缩方法与边际化
13 | 线性降维:主成分的使用
14 | 非线性降维:流形学习
15 | 从回归到分类:联系函数与降维
16 | 建模非正态分布:广义线性模型
17 | 几何角度看分类:支持向量机
18 | 从全局到局部:核技巧
19 | 非参数化的局部模型:K近邻
20 | 基于距离的学习:聚类与度量学习
21 | 基函数扩展:属性的非线性化
22 | 自适应的基函数:神经网络
23 | 层次化的神经网络:深度学习
24 | 深度编解码:表示学习
25 | 基于特征的区域划分:树模型
26 | 集成化处理:Boosting与Bagging
27 | 万能模型:梯度提升与随机森林
总结课 | 机器学习的模型体系
概率图模型 (14讲)
28 | 最简单的概率图:朴素贝叶斯
29 | 有向图模型:贝叶斯网络
30 | 无向图模型:马尔可夫随机场
31 | 建模连续分布:高斯网络
32 | 从有限到无限:高斯过程
33 | 序列化建模:隐马尔可夫模型
34 | 连续序列化模型:线性动态系统
35 | 精确推断:变量消除及其拓展
36 | 确定近似推断:变分贝叶斯
37 | 随机近似推断:MCMC
38 | 完备数据下的参数学习:有向图与无向图
39 | 隐变量下的参数学习:EM方法与混合模型
40 | 结构学习:基于约束与基于评分
总结课 | 贝叶斯学习的模型体系
结束语 (1讲)
结课 | 终有一天,你将为今天的付出骄傲
机器学习40讲
登录|注册

09 | 实验设计

王天一 2018-06-23
和其他科学学科一样,机器学习也会借助实验获取关于目标的信息。宏观来看,实验的设计与分析正在逐渐脱离具体问题的限定,有成为一门独立学科的趋势。不管是物理学还是经济学,对实验的处理都存在着一些共性的准则。在本篇文章中,我就和你简单谈谈机器学习中有关实验设计与分析的一些原则性问题。
在讨论实验设计之前,先得知道实验设计到底是怎么回事。实验设计(experimental design),或者叫设计实验(designed experiment),指的是在实验之前制定详细的实验计划,确定实验目标并选择待研究的过程因子(process factor)。精心挑选的实验设计可以在给定资源的条件下使实验获得的信息量最大化,让实验结果最大程度地接近真实结果。实验设计需要人为改变一个或多个过程因子,以观察这种变化对一个或多个因变量的影响,其目的是分析获得的数据以产生有效和客观的结论。
在现有的关于机器学习的文献中,对设计实验部分的讨论似乎并不多见,其原因在于这部分工作已经由他人代劳,而不需要放在机器学习的应用层面来解决。在各种各样的图像识别竞赛中,无论是训练集还是测试集都是预先给定的,其中的每张图片都有精确的标注。看起来,设计实验似乎是一项蓝领工作,它被处理高大上算法的白领工作给人为地屏蔽了。可真实情况是什么呢?通过人工数据训练出来的算法,在真实世界中的行为可能完全不同,从“人工智能”变成“人工智障”只是捅破一层窗户纸这么简单。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《机器学习40讲》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(5)

  • 青刀快马
    老师,什么时候能具体说下如何创建一个模型?

    作者回复: 先跟据任务来选择分类模型或者回归模型,再来选择模型具体的形式,比如线性回归或者逻辑回归,模型的形式也可以根据你的数据来调整。确定模型的形式以后就要用数据训练出最优的参数,再对不同的模型进行比较,选出一个最合适的。

    2018-06-24
    1
  • 王宇直
    老师你好,如果把超参也一样用grid search来选择,会有什么不好的结果?

    作者回复: 运算量太大……

    2019-03-13
  • Kevin.zhang🌏
    作业:王老师是我的机器学习入门老师,所以还没有真正开始的实践,不过后续我会注意老师叮嘱的地方,期待进一步学习!
    2018-12-26
  • 林彦
    现在投入的时间有限,实践少,模型的形式,超参数的选择,如何选择衡量的方法和参数都只会照搬,还不太理解后面的因果和细节。因此是否做错了或者掉进什么坑里已自己现在的认知都还未意识到,怎么探索的思路也不清晰。

    作者回复: 其实都是试错试出来的。

    2018-07-02
  • 极客时间工程师
    学习了
    2018-06-25
收起评论
5
返回
顶部