机器学习40讲
王天一
工学博士,副教授
立即订阅
8038 人已学习
课程目录
已完结 44 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 打通修炼机器学习的任督二脉
免费
机器学习概观 (10讲)
01 | 频率视角下的机器学习
02 | 贝叶斯视角下的机器学习
03 | 学什么与怎么学
04 | 计算学习理论
05 | 模型的分类方式
06 | 模型的设计准则
07 | 模型的验证方法
08 | 模型的评估指标
09 | 实验设计
10 | 特征预处理
统计机器学习模型 (18讲)
11 | 基础线性回归:一元与多元
12 | 正则化处理:收缩方法与边际化
13 | 线性降维:主成分的使用
14 | 非线性降维:流形学习
15 | 从回归到分类:联系函数与降维
16 | 建模非正态分布:广义线性模型
17 | 几何角度看分类:支持向量机
18 | 从全局到局部:核技巧
19 | 非参数化的局部模型:K近邻
20 | 基于距离的学习:聚类与度量学习
21 | 基函数扩展:属性的非线性化
22 | 自适应的基函数:神经网络
23 | 层次化的神经网络:深度学习
24 | 深度编解码:表示学习
25 | 基于特征的区域划分:树模型
26 | 集成化处理:Boosting与Bagging
27 | 万能模型:梯度提升与随机森林
总结课 | 机器学习的模型体系
概率图模型 (14讲)
28 | 最简单的概率图:朴素贝叶斯
29 | 有向图模型:贝叶斯网络
30 | 无向图模型:马尔可夫随机场
31 | 建模连续分布:高斯网络
32 | 从有限到无限:高斯过程
33 | 序列化建模:隐马尔可夫模型
34 | 连续序列化模型:线性动态系统
35 | 精确推断:变量消除及其拓展
36 | 确定近似推断:变分贝叶斯
37 | 随机近似推断:MCMC
38 | 完备数据下的参数学习:有向图与无向图
39 | 隐变量下的参数学习:EM方法与混合模型
40 | 结构学习:基于约束与基于评分
总结课 | 贝叶斯学习的模型体系
结束语 (1讲)
结课 | 终有一天,你将为今天的付出骄傲
机器学习40讲
登录|注册

34 | 连续序列化模型:线性动态系统

王天一 2018-08-23
在隐马尔可夫模型中,一般的假设是状态和观测都是离散的随机变量。如果假定隐藏的状态变量满足连续分布,那么得到的就是线性动态系统。虽然这个概念更多地出现在信号处理与控制论中,看起来和机器学习风马牛不相及,但是从马尔可夫性和贝叶斯概率的角度观察,线性系统也是一类重要的处理序列化数据的模型
线性动态系统(linear dynamical system)的作用可以通过下面这个例子来说明。假设一个传感器被用于测量未知的物理量 ,但测量结果 会受到零均值高斯噪声的影响。在单次测量中,根据最大似然可以得到,对未知的 最优的估计值就是测量结果本身,也就是令 。可是如果可以对 进行多次重复测量的话,就可以通过求解这些结果的平均来平滑掉随机噪声的影响,从而计算出更加精确的估计。
可一旦多次测量结果是在不同的时间点上测出的,也就是时间序列 时,问题就没有那么简单了,因为这种情况下需要将未知变量 时变特性考虑进去,前一时刻的 和后一时刻的 就不一样了。如果还是像上面那样直接对不同时刻的测量结果求均值的话,虽然随机噪声的影响可以被平滑掉,但变量本身的时变特性又会作为另一种噪声出现在结果中。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《机器学习40讲》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言

由作者筛选后的优质留言将会公开显示,欢迎踊跃留言。
收起评论
返回
顶部