20 | 基于距离的学习:聚类与度量学习
王天一

截至目前,我所介绍的模型都属于监督学习范畴,它们处理具有标签的输入数据,给出意义明确的输出,回归模型输出的是连续的回归值,分类模型输出的是离散的类别标签,这些模型都属于预测模型(predictive model)。
另一类模型则隶属于无监督学习,这类模型学习没有标签的数据,其作用也不是计算类别或回归值,而是要揭示关于数据隐藏结构的一些规律,因此也被称为描述模型(descriptive model)。聚类算法就是最具代表性的描述模型。
聚类分析(cluster analysis)实际上是一种分组方式,它使每一组中的组内对象的相似度都高于组间对象的相似度,分出来的每个组都是一个簇(cluster)。由于相似度是聚类的依据,作为相似度主要度量方式之一的距离就在聚类中发挥着重要作用。
在“人工智能基础课”中,我曾介绍过四种主要的聚类算法,你可以结合下面的要点图回忆一下。除了以概率分布为基础的分布聚类以外,其他三类聚类算法都涉及对距离的使用,而其中最典型的就是 均值所代表的原型聚类算法。

理解 均值算法的基础是理解它对距离的使用方式。前面介绍的 近邻算法其实也用到了距离,近邻的选择就是以距离为依据的。但近邻点是以内收的形式影响未知的数据,所有近邻点按照一定的规则共同决定处于中心的未知数据的类别。如果将这种影响的方式调转方向,让处于中心的样本作为原型(prototype),像一个小太阳一样用万有引力牵引着周围的其他样本,那么其他样本就会像卫星一样被吸附在原型周围,共同构成一个星系,也就是簇。
公开
同步至部落
取消
完成
0/2000
笔记
复制
AI
- 深入了解
- 翻译
- 解释
- 总结
仅可试看部分内容,如需阅读全部内容,请付费购买文章所属专栏
《机器学习 40 讲》,新⼈⾸单¥59
《机器学习 40 讲》,新⼈⾸单¥59
立即购买
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
登录 后留言
全部留言(2)
- 最新
- 精选
- paradox老师,您好 我有两个关于马氏距离的问题: 1、Gxi 的维度会比 xi 的原始维度有所降低,故可以用作降维,这里不理解G的含义以及为什么会使维度有所降低 2、马氏距离的好处在于引入了可调节的参数,从而使距离可以通过对数据的学习来加以改善,是不是因为中间的协方差矩阵起了权重的作用,也就是后面所说的G起了权重作用,因此可以用作降维? 谢谢!
作者回复: 马氏距离的原始定义要求度量矩阵Sigma^{-1}是两个元素的协方差矩阵。但在做度量学习时,我们可以人为地生成度量矩阵,在保证距离相似性的同时降低它的秩,让它的秩小于原来的属性数目。 G是对半正定度量矩阵的分解,其作用相当于线性变换。当度量矩阵的秩较小时,线性变换G就可以将数据投影到低维空间,实现降维。
1 - ifelse学习打卡归属地:浙江
收起评论