机器学习40讲
王天一
工学博士,副教授
立即订阅
8040 人已学习
课程目录
已完结 44 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 打通修炼机器学习的任督二脉
免费
机器学习概观 (10讲)
01 | 频率视角下的机器学习
02 | 贝叶斯视角下的机器学习
03 | 学什么与怎么学
04 | 计算学习理论
05 | 模型的分类方式
06 | 模型的设计准则
07 | 模型的验证方法
08 | 模型的评估指标
09 | 实验设计
10 | 特征预处理
统计机器学习模型 (18讲)
11 | 基础线性回归:一元与多元
12 | 正则化处理:收缩方法与边际化
13 | 线性降维:主成分的使用
14 | 非线性降维:流形学习
15 | 从回归到分类:联系函数与降维
16 | 建模非正态分布:广义线性模型
17 | 几何角度看分类:支持向量机
18 | 从全局到局部:核技巧
19 | 非参数化的局部模型:K近邻
20 | 基于距离的学习:聚类与度量学习
21 | 基函数扩展:属性的非线性化
22 | 自适应的基函数:神经网络
23 | 层次化的神经网络:深度学习
24 | 深度编解码:表示学习
25 | 基于特征的区域划分:树模型
26 | 集成化处理:Boosting与Bagging
27 | 万能模型:梯度提升与随机森林
总结课 | 机器学习的模型体系
概率图模型 (14讲)
28 | 最简单的概率图:朴素贝叶斯
29 | 有向图模型:贝叶斯网络
30 | 无向图模型:马尔可夫随机场
31 | 建模连续分布:高斯网络
32 | 从有限到无限:高斯过程
33 | 序列化建模:隐马尔可夫模型
34 | 连续序列化模型:线性动态系统
35 | 精确推断:变量消除及其拓展
36 | 确定近似推断:变分贝叶斯
37 | 随机近似推断:MCMC
38 | 完备数据下的参数学习:有向图与无向图
39 | 隐变量下的参数学习:EM方法与混合模型
40 | 结构学习:基于约束与基于评分
总结课 | 贝叶斯学习的模型体系
结束语 (1讲)
结课 | 终有一天,你将为今天的付出骄傲
机器学习40讲
登录|注册

结课 | 终有一天,你将为今天的付出骄傲

王天一 2018-09-11
不知不觉间,又一个 40 期的机器学习专栏也走到了尾声。在专栏里,我从理解概率的两大流派入手,以每种流派中的各个模型为主线,对统计机器学习和贝叶斯机器学习做了系统的介绍,并从这些模型中梳理出它们之间关系的脉络,帮助你尽可能地从更加宏观的角度来理解模型内部的关联。

内容:由博返约求精深

和上一季的“人工智能基础课”相比,这一季专栏的内容聚焦于机器学习一点,力求更加深入地挖掘这个主题。增加深度意味着提升难度,无论是写作的我还是阅读的你,都需要投入更多的时间和精力去理解与消化。
理解事物时,我们都习惯从感性认知入手,可要从感性认知进化为理性思辨,你还是不得不和那些恼人的符号和讨厌的公式打交道。然而这是学习的必经之路:直观而具体的认识虽然容易理解,其适用范围却相当有限,要解决现实问题就必须将认识上升到知识的高度,而知识的价值恰恰就蕴含在复杂的公式所体现出的规律之中。
具有普适性的抽象规律,才具有学习的价值。在机器学习中,各种各样的模型某种程度而言其实也是简单具体的实例,诸如局部化和集成化之类的方法才是支配模型演变的规律。正是这些规律与统计学习的理论相结合,才让机器学习变得魅力无穷。

收获:见贤思齐多自省

工作上的职责所在让我接触了很多关于教学的文献与范例,其中一些国内外教学名家的课程堪称醍醐灌顶。虽然学科有所区别,但这些大师总能深入浅出、化繁为简,将深奥的道理以老妪能懂的形式清晰而准确地解释出来。体验这些大师的授课是种享受,在艰辛的求索中感受到一丝如沐春风的惬意。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《机器学习40讲》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(3)

  • 林彦
    谢谢王教授的辛勤付出和对抽象概念的精彩解读。最近业余时间同时在学习和实践别的知识和技能。有些课程之后再补上。期望老师还是能出版相关的书籍。这次有了Github代码也是很好的资源。

    希望之后在机器学习继续探索的道路上还有机会向老师学习和与您交流。


    作者回复: 过奖过奖。撰写专栏,和大家在评论区交流,于我也是学习和进步的过程。将问题给别人讲明白逼迫我自己加深理解,和大家的互动则让道理越辩越明。感谢你的厚爱与反馈,祝你在新的征途上顺利前行!

    2018-09-14
    1
  • scofined
    王教授的<裂变>一书不错,果真是通俗易懂,最近正在看,希望能入个门
    2019-07-10
  • paradox
    老师,您好
    对于本科毕业论文选题,您有什么适合掌了理论,但是实践能力一般的学生的论文题目么
    比如,我熟悉LDA的原理,了解部分调用,但是我不知道怎样找一个小的方向去应用它适合自己。
    谢谢指点

    作者回复: 原则上本科生的毕业论文并不要求创新,只要能利用已有的知识规规矩矩解决一个问题就可以了。建议你找一个合适的问题,用LDA或者其他什么的去解决,至于这个问题来源于实践还是自己设计的原型问题,难度到底有多大,就需要你的指导老师来把握了。

    2018-09-19
收起评论
3
返回
顶部