机器学习40讲
王天一
工学博士,副教授
立即订阅
8040 人已学习
课程目录
已完结 44 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 打通修炼机器学习的任督二脉
免费
机器学习概观 (10讲)
01 | 频率视角下的机器学习
02 | 贝叶斯视角下的机器学习
03 | 学什么与怎么学
04 | 计算学习理论
05 | 模型的分类方式
06 | 模型的设计准则
07 | 模型的验证方法
08 | 模型的评估指标
09 | 实验设计
10 | 特征预处理
统计机器学习模型 (18讲)
11 | 基础线性回归:一元与多元
12 | 正则化处理:收缩方法与边际化
13 | 线性降维:主成分的使用
14 | 非线性降维:流形学习
15 | 从回归到分类:联系函数与降维
16 | 建模非正态分布:广义线性模型
17 | 几何角度看分类:支持向量机
18 | 从全局到局部:核技巧
19 | 非参数化的局部模型:K近邻
20 | 基于距离的学习:聚类与度量学习
21 | 基函数扩展:属性的非线性化
22 | 自适应的基函数:神经网络
23 | 层次化的神经网络:深度学习
24 | 深度编解码:表示学习
25 | 基于特征的区域划分:树模型
26 | 集成化处理:Boosting与Bagging
27 | 万能模型:梯度提升与随机森林
总结课 | 机器学习的模型体系
概率图模型 (14讲)
28 | 最简单的概率图:朴素贝叶斯
29 | 有向图模型:贝叶斯网络
30 | 无向图模型:马尔可夫随机场
31 | 建模连续分布:高斯网络
32 | 从有限到无限:高斯过程
33 | 序列化建模:隐马尔可夫模型
34 | 连续序列化模型:线性动态系统
35 | 精确推断:变量消除及其拓展
36 | 确定近似推断:变分贝叶斯
37 | 随机近似推断:MCMC
38 | 完备数据下的参数学习:有向图与无向图
39 | 隐变量下的参数学习:EM方法与混合模型
40 | 结构学习:基于约束与基于评分
总结课 | 贝叶斯学习的模型体系
结束语 (1讲)
结课 | 终有一天,你将为今天的付出骄傲
机器学习40讲
登录|注册

总结课 | 贝叶斯学习的模型体系

王天一 2018-09-08
在今天这篇总结中,我将对贝叶斯机器学习中涉及的模型做一个系统的梳理。虽然这个模块的主题是概率图模型,内容也围绕着概率图的三大问题——表示、推断和学习展开,但概率图归根结底是手段,其目的是将概率分布用图结构表示出来,进而从贝叶斯定理出发,从概率角度解决机器学习的问题。因此从宏观的角度来对概率模型加以整理是很有必要的。
概率模型基本上都属于生成模型,它们可以建模数据的生成机制,这和统计机器学习以判别模型为主的特色形成鲜明的对比。在统计学习中,几乎所有模型都可以追溯到线性回归的演化,在贝叶斯学习里,起到万物之源作用的是具有最大不确定性的高斯分布,对高斯分布的不同处理方式决定了不同的数据生成方式。
在观察高斯分布的演化时,不妨先从外部入手。最简单的外部拓展方法就是混合,将多个不同数字特征的高斯分布混杂在一起,先按一定概率抽取成分,再根据选定的成分分布生成数据,这种生成模型就是高斯混合模型。在高斯混合模型里,决定每个时刻的观察结果到底来自哪个成分的变量不能被直接观测,因而是隐变量。
除了横向意义上的混合之外,纵向意义上的时序也是外部演化的常见手段,这相当于在数据序列中引入马尔可夫性。如果给高斯混合模型中的隐变量添加时序关系,让下一时刻的状态依赖于这一时刻的状态,就形成了隐马尔可夫模型。如果隐马尔可夫模型的状态数目从有限扩展到无穷多,又形成了线性动态系统
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《机器学习40讲》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(3)

  • 吕胜
    老师可以开专栏继续讲解深度学习的理论

    作者回复: 深度学习在理论上其实无甚稀奇,都是机器学习里的冷饭,但其中的算法确实精妙。

    2018-09-09
    3
  • Wang
    老师认为最大熵模型属于概率图模型这一类别吗?如果不是那应该属于什么呢?

    希望老师能百忙之中抽出宝贵的时间回答下

    作者回复: 最大熵与其说是具体的方法,莫不如说是一种思路,通过引入最少的未经证实的假设来增加模型的通用性。不光在机器学习,在其他的信息处理任务中也有应用。当然在应用上,最大熵模型和softmax,和条件随机场都一脉相承。

    2019-03-01
  • 林彦
    建议可以在某个细分领域,比如对自然语言处理,图像或语音的应用案例做一些方法和算法的讲解。
    2018-09-14
收起评论
3
返回
顶部