机器学习40讲
王天一
工学博士,副教授
立即订阅
8040 人已学习
课程目录
已完结 44 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 打通修炼机器学习的任督二脉
免费
机器学习概观 (10讲)
01 | 频率视角下的机器学习
02 | 贝叶斯视角下的机器学习
03 | 学什么与怎么学
04 | 计算学习理论
05 | 模型的分类方式
06 | 模型的设计准则
07 | 模型的验证方法
08 | 模型的评估指标
09 | 实验设计
10 | 特征预处理
统计机器学习模型 (18讲)
11 | 基础线性回归:一元与多元
12 | 正则化处理:收缩方法与边际化
13 | 线性降维:主成分的使用
14 | 非线性降维:流形学习
15 | 从回归到分类:联系函数与降维
16 | 建模非正态分布:广义线性模型
17 | 几何角度看分类:支持向量机
18 | 从全局到局部:核技巧
19 | 非参数化的局部模型:K近邻
20 | 基于距离的学习:聚类与度量学习
21 | 基函数扩展:属性的非线性化
22 | 自适应的基函数:神经网络
23 | 层次化的神经网络:深度学习
24 | 深度编解码:表示学习
25 | 基于特征的区域划分:树模型
26 | 集成化处理:Boosting与Bagging
27 | 万能模型:梯度提升与随机森林
总结课 | 机器学习的模型体系
概率图模型 (14讲)
28 | 最简单的概率图:朴素贝叶斯
29 | 有向图模型:贝叶斯网络
30 | 无向图模型:马尔可夫随机场
31 | 建模连续分布:高斯网络
32 | 从有限到无限:高斯过程
33 | 序列化建模:隐马尔可夫模型
34 | 连续序列化模型:线性动态系统
35 | 精确推断:变量消除及其拓展
36 | 确定近似推断:变分贝叶斯
37 | 随机近似推断:MCMC
38 | 完备数据下的参数学习:有向图与无向图
39 | 隐变量下的参数学习:EM方法与混合模型
40 | 结构学习:基于约束与基于评分
总结课 | 贝叶斯学习的模型体系
结束语 (1讲)
结课 | 终有一天,你将为今天的付出骄傲
机器学习40讲
登录|注册

21 | 基函数扩展:属性的非线性化

王天一 2018-07-21
虽然线性回归是机器学习中最基础的模型,但它的表达能力会天然地受到线性函数的限制,用它来模拟多项式函数或者指数函数等非线性的关系时,不可避免地会出现误差。要获得更强的表达能力,必须要把非线性的元素纳入到学习模型之中。
以核技巧为代表的局部化模型就是一种有效的非线性的尝试。但它的非线性来源于非参数的处理方式,也就是将很多个规则的局部组合成一个不规则的整体。那么有没有可能在全局层面上添加非线性元素呢?
还记得线性回归的表达式吗?在这里我把它重写一遍
其中的 可以看成是和属性相关的基函数(basis function)。在最原始的线性回归中,基函数的形式是恒等函数,因此这样的模型无论对属性 还是对系数 都是线性的。
但在统计学中,线性模型名称中的“线性”描述的对象是未知的回归系数 ,也就是回归结果和回归系数之间存在着线性关系。这说明回归式中的和属性相关的每一项对输出的贡献程度都是固定的,但这些贡献到底以什么样的形式来输出,是属性取值本身还是它的平方抑或开根号,线性模型并没有做出指定。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《机器学习40讲》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(2)

  • 你不是我
    自由落体的二阶导是g?还是g/2?
    2019-01-28
  • 我心飞扬
    对于单变量可以用平滑样条。多变量中有类似的概念吗?广义可加模型有成熟的包可以用吗?

    作者回复: 多变量也有平滑样条,把一元函数的二阶导换成多元函数的二阶导就可以了,方法的名字叫thin plate spline。相关的包可能在专攻统计的R语言中存在。

    2018-07-21
收起评论
2
返回
顶部