机器学习40讲
王天一
工学博士,副教授
立即订阅
8040 人已学习
课程目录
已完结 44 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 打通修炼机器学习的任督二脉
免费
机器学习概观 (10讲)
01 | 频率视角下的机器学习
02 | 贝叶斯视角下的机器学习
03 | 学什么与怎么学
04 | 计算学习理论
05 | 模型的分类方式
06 | 模型的设计准则
07 | 模型的验证方法
08 | 模型的评估指标
09 | 实验设计
10 | 特征预处理
统计机器学习模型 (18讲)
11 | 基础线性回归:一元与多元
12 | 正则化处理:收缩方法与边际化
13 | 线性降维:主成分的使用
14 | 非线性降维:流形学习
15 | 从回归到分类:联系函数与降维
16 | 建模非正态分布:广义线性模型
17 | 几何角度看分类:支持向量机
18 | 从全局到局部:核技巧
19 | 非参数化的局部模型:K近邻
20 | 基于距离的学习:聚类与度量学习
21 | 基函数扩展:属性的非线性化
22 | 自适应的基函数:神经网络
23 | 层次化的神经网络:深度学习
24 | 深度编解码:表示学习
25 | 基于特征的区域划分:树模型
26 | 集成化处理:Boosting与Bagging
27 | 万能模型:梯度提升与随机森林
总结课 | 机器学习的模型体系
概率图模型 (14讲)
28 | 最简单的概率图:朴素贝叶斯
29 | 有向图模型:贝叶斯网络
30 | 无向图模型:马尔可夫随机场
31 | 建模连续分布:高斯网络
32 | 从有限到无限:高斯过程
33 | 序列化建模:隐马尔可夫模型
34 | 连续序列化模型:线性动态系统
35 | 精确推断:变量消除及其拓展
36 | 确定近似推断:变分贝叶斯
37 | 随机近似推断:MCMC
38 | 完备数据下的参数学习:有向图与无向图
39 | 隐变量下的参数学习:EM方法与混合模型
40 | 结构学习:基于约束与基于评分
总结课 | 贝叶斯学习的模型体系
结束语 (1讲)
结课 | 终有一天,你将为今天的付出骄傲
机器学习40讲
登录|注册

40 | 结构学习:基于约束与基于评分

王天一 2018-09-06
看完了参数学习,我们再来看看结构学习。
结构学习(structure learning)的任务是找到与数据匹配度最高的网络结构,需要同时学习未知图模型的结构和参数。这也很容易理解:模型的结构都不知道,参数自然也是不知道的,所以需要一并来学习。结构学习的任务是根据训练数据集找到结构最恰当的模型,这无疑比参数学习要复杂得多,也有更多的不确定性。
对图模型进行结构学习的目的有两个。一方面在于知识发现(knowledge discovery),根据因变量的结果来判定自变量之间的依赖关系;另一方面则在于密度估计(density estimation),估计出数据分布的特性,据此对新样本进行推断。
对图模型进行结构学习有哪些方法呢?主要有三种,分别是基于约束的学习基于评分的学习基于回归的学习,这三种方法都可以应用在有向的贝叶斯网络和无向的马尔可夫随机场中,但在下面的介绍中我将以较为简单的贝叶斯网络为例。
基于约束的结构学习(constraint-based structure learning)将贝叶斯网络视为条件独立性的表示,与贝叶斯网络的语义非常贴近。这种方法首先从数据中识别出一组条件独立性作为约束,然后尝试找到最符合这些约束的网络结构。基于约束的学习与贝叶斯网络的结构特征密切相关,但它缺乏类似于似然函数的显式目标函数,因而不能直接找到全局的最优结构,也就不适用于概率框架。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《机器学习40讲》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(1)

  • polar
    老师,好!整个教程过了一遍,老师讲的系统,但是,对于我个人印象不怎么深刻,老师有没有对应的示例代码,分享一下,想通过这种方式加深一下理解
    2018-12-27
    2
收起评论
1
返回
顶部