机器学习40讲
王天一
工学博士,副教授
立即订阅
8040 人已学习
课程目录
已完结 44 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 打通修炼机器学习的任督二脉
免费
机器学习概观 (10讲)
01 | 频率视角下的机器学习
02 | 贝叶斯视角下的机器学习
03 | 学什么与怎么学
04 | 计算学习理论
05 | 模型的分类方式
06 | 模型的设计准则
07 | 模型的验证方法
08 | 模型的评估指标
09 | 实验设计
10 | 特征预处理
统计机器学习模型 (18讲)
11 | 基础线性回归:一元与多元
12 | 正则化处理:收缩方法与边际化
13 | 线性降维:主成分的使用
14 | 非线性降维:流形学习
15 | 从回归到分类:联系函数与降维
16 | 建模非正态分布:广义线性模型
17 | 几何角度看分类:支持向量机
18 | 从全局到局部:核技巧
19 | 非参数化的局部模型:K近邻
20 | 基于距离的学习:聚类与度量学习
21 | 基函数扩展:属性的非线性化
22 | 自适应的基函数:神经网络
23 | 层次化的神经网络:深度学习
24 | 深度编解码:表示学习
25 | 基于特征的区域划分:树模型
26 | 集成化处理:Boosting与Bagging
27 | 万能模型:梯度提升与随机森林
总结课 | 机器学习的模型体系
概率图模型 (14讲)
28 | 最简单的概率图:朴素贝叶斯
29 | 有向图模型:贝叶斯网络
30 | 无向图模型:马尔可夫随机场
31 | 建模连续分布:高斯网络
32 | 从有限到无限:高斯过程
33 | 序列化建模:隐马尔可夫模型
34 | 连续序列化模型:线性动态系统
35 | 精确推断:变量消除及其拓展
36 | 确定近似推断:变分贝叶斯
37 | 随机近似推断:MCMC
38 | 完备数据下的参数学习:有向图与无向图
39 | 隐变量下的参数学习:EM方法与混合模型
40 | 结构学习:基于约束与基于评分
总结课 | 贝叶斯学习的模型体系
结束语 (1讲)
结课 | 终有一天,你将为今天的付出骄傲
机器学习40讲
登录|注册

35 | 精确推断:变量消除及其拓展

王天一 2018-08-25
在前面的几讲中,我和你分享了概率图模型中的一些代表性模型,它们都属于表示(representation)的范畴,将关系通过结点和有向边精确地表示出来。接下来,我们将对概率图模型的推断任务加以介绍。
推断(inference)是利用图结构表示的联合分布来计算某个变量的概率,得到关于目标问题的数字化结论。在概率图模型中,因子分解与条件独立性这两大法宝可以大量节约概率运算,给推断问题带来简洁高效的解法。
概率图中的推断可以分为两类:精确推断和近似推断。精确推断(exact inference)是精确计算变量的概率分布,可以在结构比较简单的模型中实现;近似推断(approximate inference)则是在不影响推理正确性的前提下,通过适当降低精度来提高计算效率,适用于结点数目多、网络结构复杂的模型。在这一讲中,我们先来分析精确推断。
精确推断最基本的方法是变量消除(variable elimination),这种方法对“与待求解的条件概率无关的变量”进行边际化处理,也就是将中间变量约掉,从而计算出目标概率。变量消除的基本思想可以通过贝叶斯网络中所举的例子来解释,问题对应的贝叶斯网络如下图所示,所有的先验概率与条件概率都在图中给出。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《机器学习40讲》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(1)

  • 林彦
    请问老师“具体做法是将所有 fo=0所在行的因子乘积求和,得到联合概率 p(fo=0,lo=0,hb=1)”中是把文中表格的第4,5,6列的概率值相乘之后然后再按行(第1到4行)求和?

    我的理解是如此,还未来得及验算。谢谢。

    作者回复: 是的,这么做就是考虑了fo=0且lo=0且hb=1所有可能的情形。

    2018-09-17
收起评论
1
返回
顶部