无论是贝叶斯网络还是马尔可夫随机场,定义的变量都服从取值有限的离散分布,变量之间的关联则可以用有限维度的矩阵来表示。如果将随机变量的范围从离散型扩展到连续型,变量的可能取值就有无穷多个,这时变量之间的依赖关系就不能再用表格的形式来表示了,需要重新定义概率图模型中的相互作用与条件独立性。
考虑最简单的情形,也就是结点所表示的随机变量都服从高斯分布,由高斯型连续随机变量构成的概率图模型统称为高斯网络(Gaussian network)。
如果多个服从一维高斯分布的随机变量构成一个整体,那它们的联合分布就是多元高斯分布(multivariate Gaussian distribution),其数学表达式可以写成
p(x)=(2π)n/2∣Σ∣1/21exp[−21(x−μ)TΣ−1(x−μ)]
其中 μ 是这组随机变量的均值向量(mean vector),Σ 是这组随机变量的协方差矩阵(covariance matrix),∣Σ∣ 是它的行列式值。