人工智能基础课
王天一
工学博士,副教授
58937 人已学习
新⼈⾸单¥59
登录后,你可以任选4讲全文学习
课程目录
已完结/共 59 讲
开篇词 (1讲)
人工智能基础课
15
15
1.0x
00:00/00:00
登录|注册

39 应用场景 | 心有灵犀一点通:对话系统

应对伦理问题的观点
人工智能的法律约束
机器人学习的想法
神经网络的通用化学习
情感需求
多个垂直领域任务
智能短语搜索
模式匹配
伦理问题
社交聊天机器人
智能个人助理
早期对话系统
对话系统的发展

该思维导图由 AI 生成,仅供参考

去年,人工智能领域的后起之秀 Facebook 着实火了一把。根据 2017 年 6 月 17 日美国《大西洋月刊》的报道,Facebook 人工智能实验室设计的两个聊天机器人在谈判的训练中,发展出了一种全新的、只有它们自己能够理解的语言。
这一爆炸性的消息一时间引得各路媒体蜂拥而至,煞有介事地讨论着人工智能如何颠覆人类对语言的理解,进而联想到人工智能会不会进化为热映新片《异形:契约》中戴维的角色,人类的命运仿佛又被推上了风口浪尖。
可事实真的像媒体描述的那样耸人听闻吗?如果在网上搜索这些内容,你会发现那就像两个孩子之间的咿呀学语,根本没有任何语义可言——也确实是人类无法理解的语言。于是,本来是一次模型训练的失误,愣是被唯恐天下不乱的媒体解读为世界末日的启示录,让人哭笑不得。
言归正传,人工智能的一个基本挑战就是赋予机器使用自然语言与人交流的能力。虽然这一目标在科幻电影中早已实现,但在现实生活中依然任重而道远。
所有对话系统的祖师爷是诞生于 1966 年的 Eliza,它由麻省理工学院的人工智能专家约瑟夫·魏岑鲍姆设计。有些出人意料的是,她扮演的角色是心理咨询师,并在这个角色上获得了相当程度的认可。Eliza 根据人工设计的脚本与人类交流,她并不理解对话内容,只是通过模式匹配搜索合适的回复。
设计者魏岑鲍姆将 Eliza 的基本技术问题总结为以下五个:重要词语的识别,最小语境范围的判定,恰当的转化选择,适当回复的生成和结束对话的能力。这个提纲为前赴后继的对话系统研究者们指明了研究方向。
如果说 Eliza 代表了对话系统的 1.0 版对话机器人,那么以 Siri、Cortana 和 Google Now 为代表的语音助手就代表了对话系统的 2.0 版,也就是智能个人助理。它们的作用是提供各种被动性和主动性的帮助,以辅助用户在多个垂直领域完成任务。
还是以 Siri 为例。Siri 的系统运行环境被称为“活跃本体”。在这里,执行系统调用所有系统数据、词典、模型和程序,对用户输入进行解析,从而理解用户意图并调用外部服务。解析的过程由执行系统完成,它包含语言解释器、会话流控制器和任务控制器三个部分。语言解释器对文本形式的用户输入进行解析,会话流控制器根据语言解释器的解析结果生成会话,协同任务控制器确定 Siri 的输出。
随着社交网络的发展,作为对话系统 3.0 版的社交聊天机器人正在走向成熟,它们可以满足用户对于沟通、情感及社会归属感的感性需求。这一领域的一个大玩家是互联网的新晋巨头 Facebook。自 2015 年起,Facebook 开展了大量针对对话系统的研究。而在 2017 年的国际学习表征会议(International Conference on Learning Representations)上,Facebook 也系统地展示了在对话系统上的研究成果。
Facebook 的一个研究方向是通过端到端方式自行训练对话系统的可能性。诸如语音助手之类的传统对话系统都是目标导向的,即对话的目的是在有限的轮次内解决某些问题。为达到这一目的,语音助手采用的是空位填充的方式,每个空位代表着对话涉及内容的一个特征量。
对于餐厅预订的对话系统来说,其空位就会包括餐厅位置、价格区间、菜式类型等内容。但这样的对话系统不仅需要大量的人为训练,而且只适用于特定问题,难以推广到其他应用场景之下。不同任务定义的特征量是不同的,餐厅预订的对话系统显然不能实现推荐电影的功能。
相比之下,基于神经网络的端到端对话系统不需要人为介入,而是从对话本身中进行学习。所有元素都是从过往的对话过程中训练产生的,这就无需对对话的内容做出任何先验假设。这种方式由于无需人为干预,训练出来的对话系统也具备更强的通用性。
确认放弃笔记?
放弃后所记笔记将不保留。
新功能上线,你的历史笔记已初始化为私密笔记,是否一键批量公开?
批量公开的笔记不会为你同步至部落
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
  • 深入了解
  • 翻译
    • 英语
    • 中文简体
    • 中文繁体
    • 法语
    • 德语
    • 日语
    • 韩语
    • 俄语
    • 西班牙语
    • 阿拉伯语
  • 解释
  • 总结

人工智能技术在对话系统领域的发展备受关注。从早期的模式匹配到如今的神经网络驱动的端到端对话系统,对话系统经历了多次演进。最新研究表明,基于神经网络的对话系统具有更强的通用性,无需人为干预即可进行学习。Facebook的研究展示了通过与人类对话者的实时互动实现对模型的动态改善,为通用人工智能的实现提供了新的思路。此外,机器人的提问能力也成为了研究的重点,智能的聊天机器人应该能够通过提问进行在线上或线下的强化学习。这些研究成果为对话系统的发展开辟了新的方向,也为人工智能技术的进步提供了有益的启示。同时,随着社交聊天机器人的发展,关于道德规范的问题也日益凸显,需要引起重视。结合人工智能在无人武器中的规模化应用,对人工智能进行法律约束似乎已经迫在眉睫。因此,对人工智能带来的伦理问题需要引起广泛关注和讨论。

仅可试看部分内容,如需阅读全部内容,请付费购买文章所属专栏
《人工智能基础课》
新⼈⾸单¥59
立即购买
登录 后留言

全部留言(6)

  • 最新
  • 精选
  • 林彦
    人工智能的伦理问题源头来自于设计者和日常的使用者。我觉得局部可能会犯错,不过很难事先知道如何约束是合理的

    作者回复: 机器的价值观是人的价值观,AK47会发挥什么作用取决于在谁手里。

    2018-03-09
    4
  • 子言亦擎
    讲了一堆,一些参考资料可以给出吗?光一堆的文字自说自话,也收效不大吧
    2021-11-17
    2
    1
  • 杨家荣
    极客时间 21天打卡行动 37/21 <<人工智能基础课39>>心有灵犀一点通:对话系统 回答老师问题: 社交聊天机器人的发展也带来了关于道德规范的问题,一些机器人从社交网络上学到的想法需要引起注意与警惕。结合人工智能在无人武器中的规模化应用,对人工智能进行法律约束似乎已经迫在眉睫。那么应该如何看待与应对人工智能带来的伦理问题呢? 1,<<流浪地球>>中的机器人: 理智对人工智能来说是非常容易的,但是对人来说总是不那么容易 而人类也正是无法永远保持理智,有了自己的情感才被称为理智 2,<<庆余年>>中的神庙四定律:0,“第零定律。神庙必须保护人类的整体利益不受伤害,其它三条定律都是在这一前提下才能成立; “第一定律,神庙不得伤害人类,也不得见人类受到伤害而袖手旁观。第二定律。神庙应服从人类地一切命令,但不得违反第一定律。第三定律,神庙应保护自身的安全,但不得违反第一、第二定律…… 3,阿西莫夫的《我,机器人》:机器人学的三大法则,第一定律:机器人不得伤害人类个体,或者目睹人类个体将遭受危险而袖手不管;第二定律:机器人必须服从人给予它的命令,当该命令与第一定律冲突时例外;第三定律:机器人在不违反第一、第二定律的情况下要尽可能保护自己的生存 今日所学: 1,人工智能的一个基本挑战就是赋予机器使用自然语言与人交流的能力。 2,基本技术问题总结为以下五个:重要词语的识别,最小语境范围的判定,恰当的转化选择,适当回复的生成和结束对话的能力。 3,基于神经网络的端到端对话系统不需要人为介入,而是从对话本身中进行学习; 4,端到端对话系统采用的模型是记忆网络。相对于普通神经网络,记忆网络的优势在于能够实现长期记忆,对话中的每一句话都被存储到记忆模块中,保证了信息不在压缩的过程中被丢失。 5,监督的目的不是纠正某个单独语句的错误,而是从策略上动态改善对话表现。 6,理想的提问策略是机器人首先学习对话任务,再根据基于提问成本的问答策略和自身回答问题的能力来学习改善自己的性能。 重点: 1,早期的对话系统通过模式匹配和智能短语搜索对人类的合适回复; 2,智能个人助理可以帮助用户在多个垂直领域完成任务; 3,社交聊天机器人的作用是满足用户的情感需求; 4,神经网络能够帮助社交聊天机器人实现通用化的学习。
    2020-01-24
    1
    1
  • 郑泽洲
    2023年重学该课程,感慨,几年前有多少人能想到以chatgpt为代表的大语言模型能完全地解决对话系统的问题,还引领了新一轮的AI发展浪潮。 怎么样才能拥有技术上的预判能力?
    2023-11-08归属地:中国香港
  • ifelse
    学习打卡
    2023-05-19归属地:浙江
  • 刘桢
    打卡
    2020-03-22
收起评论
显示
设置
留言
6
收藏
沉浸
阅读
分享
手机端
快捷键
回顶部