人工智能基础课
王天一
工学博士,副教授
立即订阅
12160 人已学习
课程目录
已完结 58 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 人工智能:新时代的必修课
免费
数学基础 (7讲)
01 数学基础 | 九层之台,起于累土:线性代数
02 数学基础 | 月有阴晴圆缺,此事古难全:概率论
03 数学基础 | 窥一斑而知全豹:数理统计
04 数学基础 | 不畏浮云遮望眼:最优化方法
05 数学基础 | 万物皆数,信息亦然:信息论
06 数学基础 | 明日黄花迹难寻:形式逻辑
(课外辅导)数学基础 | 拓展阅读参考书
机器学习 (10讲)
07 机器学习 | 数山有路,学海无涯:机器学习概论
08 机器学习 | 简约而不简单:线性回归
09 机器学习 | 大道至简:朴素贝叶斯方法
10 机器学习 | 衍化至繁:逻辑回归
11 机器学习 | 步步为营,有章可循:决策树
12 机器学习 | 穷则变,变则通:支持向量机
13 机器学习 | 三个臭皮匠,赛过诸葛亮:集成学习
14 机器学习 | 物以类聚,人以群分:聚类分析
15 机器学习 | 好钢用在刀刃上:降维学习
(课外辅导)机器学习 | 拓展阅读参考书
人工神经网络 (7讲)
16 人工神经网络 | 道法自然,久藏玄冥:神经网络的生理学背景
17 人工神经网络 | 一个青年才俊的意外死亡:神经元与感知器
18 人工神经网络 | 左手信号,右手误差:多层感知器
19 人工神经网络 | 各人自扫门前雪:径向基函数神经网络
20 人工神经网络 | 看不见的手:自组织特征映射
21 人工神经网络 | 水无至清,人莫至察:模糊神经网络
(课外辅导)人工神经网络 | 拓展阅读参考书
深度学习 (7讲)
22 深度学习 | 空山鸣响,静水流深:深度学习概述
23 深度学习 | 前方有路,未来可期:深度前馈网络
24 深度学习 | 小树不修不直溜:深度学习中的正则化
25 深度学习 | 玉不琢不成器:深度学习中的优化
26 深度学习 | 空竹里的秘密:自编码器
27 深度学习 | 困知勉行者勇:深度强化学习
(课外辅导)深度学习 | 拓展阅读参考书
深度学习框架下的神经网络 (5讲)
28 深度学习框架下的神经网络 | 枯木逢春:深度信念网络
29 深度学习框架下的神经网络 | 见微知著:卷积神经网络
30 深度学习框架下的神经网络 | 昨日重现:循环神经网络
31 深度学习框架下的神经网络 | 左右互搏:生成式对抗网络
32 深度学习框架下的神经网络 | 三重门:长短期记忆网络
深度学习之外的人工智能 (4讲)
33 深度学习之外的人工智能 | 一图胜千言:概率图模型
34 深度学习之外的人工智能 | 乌合之众的逆袭:集群智能
35 深度学习之外的人工智能 | 授人以鱼不如授人以渔:迁移学习
36 深度学习之外的人工智能 | 滴水藏海:知识图谱
应用场景 (4讲)
37 应用场景 | 你是我的眼:计算机视觉
38 应用场景 | 嘿, Siri:语音处理
39 应用场景 | 心有灵犀一点通:对话系统
40 应用场景 | 数字巴别塔:机器翻译
加餐 (5讲)
课外谈 | “人工智能基础课”之二三闲话
推荐阅读 | 我与人工智能的故事
直播回顾 | 机器学习必备的数学基础
第2季回归 | 这次我们来聊聊机器学习
新书 | 《裂变:秒懂人工智能的基础课》
复习课 (7讲)
一键到达 | 数学基础复习课
一键到达 | 机器学习复习课
一键到达 | 人工神经网络复习课
一键到达 | 深度学习复习课
一键到达 | 深度学习框架下的神经网络复习课
一键到达 | 深度学习之外的人工智能复习课
一键到达 | 应用场景复习课
结束语 (1讲)
结课 | 溯洄从之,道阻且长
人工智能基础课
登录|注册

23 深度学习 | 前方有路,未来可期:深度前馈网络

王天一 2018-01-30
深度前馈网络(Deep Feedforward Network)是具有深度结构的前馈神经网络,可以看成是进化版的多层感知器。与只有一个或两个隐藏层的浅层网络相比,深度前馈网络具有更多的隐藏层数目,从而具备了更强的特征提取能力。
深度前馈网络不考虑输入数据可能具备的任何特定结构,也就是不使用关于数据的先验信息。但特征提取能力增强的代价是运算复杂度的提升。因而,网络架构的建立、损失函数的选择、输出单元和隐藏单元的设计、训练误差的处理等问题就成为深度前馈网络设计中的一系列核心问题
在深度前馈网络的设计中,确定架构是首要考虑的关键问题。架构决定着网络中包含多少基本单元,以及这些基本单元之间如何相互连接。几乎所有前馈网络采用的都是链式架构,即前一层的输出是后一层的输入。在这样的链式架构中,层的数目和每一层中神经元的数目就是网络的主要变量。
介绍多层感知器时我曾提到了通用逼近的性质,这个性质的严格形式是通用逼近定理。通用逼近定理的内容是如果一个前馈网络具有单个隐藏层,这个隐藏层又有足够但是有限数目的神经元,这个神经网络就可以以任意精度逼近任意连续函数。虽然在这个定理的初始证明中,隐藏神经元的传递函数是具有“挤压”性质的非线性函数,但定理的成立性实际上并不取决于传递函数的性质,而是由网络的前馈架构所决定的。
通用逼近定理是一个存在性定理,它说明需要的神经网络是肯定存在的,却并没有指明具体的构造方法。所以在给定一个目标函数时,我们可以确定单隐藏层的感知器一定能够将它表示出来,却对隐藏层需要多少神经元毫无把握。这个数目很可能是个天文数字,这会让网络结构在计算机上根本无法实现。即使能够设计出这么复杂的算法,要对它进行训练和泛化也近乎天方夜谭。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《人工智能基础课》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(3)

  • 哈哈哈,你才是笨蛋
    学习了
    2018-01-31
  • 哈哈哈,你才是笨蛋
    2018-01-30
  • 林彦
    传统的前馈网络没有时间顺序的概念。循环网络中的每个输入样本之间则有时间顺序的概念,循环网络可以沿时间反向传播。

    LSTM在时间序列上通过输入们,输出门,遗忘门的组合与控制来让更久远的时间点的信息能更明显地影响之后时间点的输出。

    作者回复: 没错,后面会有关于LSTM的介绍。

    2018-01-30
收起评论
3
返回
顶部