人工智能基础课
王天一
工学博士,副教授
立即订阅
12214 人已学习
课程目录
已完结 58 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 人工智能:新时代的必修课
免费
数学基础 (7讲)
01 数学基础 | 九层之台,起于累土:线性代数
02 数学基础 | 月有阴晴圆缺,此事古难全:概率论
03 数学基础 | 窥一斑而知全豹:数理统计
04 数学基础 | 不畏浮云遮望眼:最优化方法
05 数学基础 | 万物皆数,信息亦然:信息论
06 数学基础 | 明日黄花迹难寻:形式逻辑
(课外辅导)数学基础 | 拓展阅读参考书
机器学习 (10讲)
07 机器学习 | 数山有路,学海无涯:机器学习概论
08 机器学习 | 简约而不简单:线性回归
09 机器学习 | 大道至简:朴素贝叶斯方法
10 机器学习 | 衍化至繁:逻辑回归
11 机器学习 | 步步为营,有章可循:决策树
12 机器学习 | 穷则变,变则通:支持向量机
13 机器学习 | 三个臭皮匠,赛过诸葛亮:集成学习
14 机器学习 | 物以类聚,人以群分:聚类分析
15 机器学习 | 好钢用在刀刃上:降维学习
(课外辅导)机器学习 | 拓展阅读参考书
人工神经网络 (7讲)
16 人工神经网络 | 道法自然,久藏玄冥:神经网络的生理学背景
17 人工神经网络 | 一个青年才俊的意外死亡:神经元与感知器
18 人工神经网络 | 左手信号,右手误差:多层感知器
19 人工神经网络 | 各人自扫门前雪:径向基函数神经网络
20 人工神经网络 | 看不见的手:自组织特征映射
21 人工神经网络 | 水无至清,人莫至察:模糊神经网络
(课外辅导)人工神经网络 | 拓展阅读参考书
深度学习 (7讲)
22 深度学习 | 空山鸣响,静水流深:深度学习概述
23 深度学习 | 前方有路,未来可期:深度前馈网络
24 深度学习 | 小树不修不直溜:深度学习中的正则化
25 深度学习 | 玉不琢不成器:深度学习中的优化
26 深度学习 | 空竹里的秘密:自编码器
27 深度学习 | 困知勉行者勇:深度强化学习
(课外辅导)深度学习 | 拓展阅读参考书
深度学习框架下的神经网络 (5讲)
28 深度学习框架下的神经网络 | 枯木逢春:深度信念网络
29 深度学习框架下的神经网络 | 见微知著:卷积神经网络
30 深度学习框架下的神经网络 | 昨日重现:循环神经网络
31 深度学习框架下的神经网络 | 左右互搏:生成式对抗网络
32 深度学习框架下的神经网络 | 三重门:长短期记忆网络
深度学习之外的人工智能 (4讲)
33 深度学习之外的人工智能 | 一图胜千言:概率图模型
34 深度学习之外的人工智能 | 乌合之众的逆袭:集群智能
35 深度学习之外的人工智能 | 授人以鱼不如授人以渔:迁移学习
36 深度学习之外的人工智能 | 滴水藏海:知识图谱
应用场景 (4讲)
37 应用场景 | 你是我的眼:计算机视觉
38 应用场景 | 嘿, Siri:语音处理
39 应用场景 | 心有灵犀一点通:对话系统
40 应用场景 | 数字巴别塔:机器翻译
加餐 (5讲)
课外谈 | “人工智能基础课”之二三闲话
推荐阅读 | 我与人工智能的故事
直播回顾 | 机器学习必备的数学基础
第2季回归 | 这次我们来聊聊机器学习
新书 | 《裂变:秒懂人工智能的基础课》
复习课 (7讲)
一键到达 | 数学基础复习课
一键到达 | 机器学习复习课
一键到达 | 人工神经网络复习课
一键到达 | 深度学习复习课
一键到达 | 深度学习框架下的神经网络复习课
一键到达 | 深度学习之外的人工智能复习课
一键到达 | 应用场景复习课
结束语 (1讲)
结课 | 溯洄从之,道阻且长
人工智能基础课
登录|注册

33 深度学习之外的人工智能 | 一图胜千言:概率图模型

王天一 2018-02-22
在前面两个模块中,我和你分享了神经网络和深度学习的知识。神经网络是理解深度表征的模型,深度学习是训练深度神经网络的算法,两者是一脉相承的关系。本质上讲,神经网络和深度学习都是由数据驱动的,大量有标记的训练样本是复杂模型取得良好性能的前提,这也解释了为什么直到近年来深度学习才得以蓬勃发展
但深度学习远非实现人工智能的唯一途径,在接下来的四篇文章中,就让我和你聊一聊深度学习之外的人工智能。
早年间的人工智能赖以实现的基础是逻辑学,但逻辑学适用的是理想化的,不存在任何不确定性的世界。可遗憾的是,真实世界是由随机性和误差主宰的,在这光怪陆离的环境中,纯粹的数理逻辑就如同古板的老夫子一般与周遭格格不入。
可即使抛开噪声与干扰不论,很多问题也没有固定的解。在医学上,即使子女的基因和母亲的基因已经确定,父亲的基因也可以有多种可能。要解决这类不确定性推理的问题,就必须借助概率论的方法。而将概率方法与图论结合起来,得到的就是今天的主题:概率图模型
概率图模型(probabilistic graphical model)也叫结构化概率模型,是用图论表现随机变量之间的条件依赖关系的建模方法。典型的概率图模型包括贝叶斯网络马尔可夫随机场,分别对应着有向图模型和无向图模型。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《人工智能基础课》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(2)

  • 林彦
    网上看到有文章提到“一个马尔可夫随机场可以作为整体成为一个更大的贝叶斯网络的节点,又或者,多个贝叶斯网络可以通过马尔可夫随机场联系起来。这种混合型的模型提供了更丰富的表达结构,同时也会给模型的推断和估计带来新的挑战。 ”

    “图框架可以用一种相容的方式,扩展为同时包含有向链接和无向链接的图。这种图被称为链图(chain graphs)(Lauritzen and Wermuth, 1989; Frydenberg, 1990),将有向图和无向图都当成了具体的实例。”

    一个具体应用中“先对遥感影像进行过分割,然后把从影像中所提取到区域、边界、顶点、语义特征及特征之间的关系分成无向与有向两种形式,再用马尔可夫随机场对邻域像素标号的空间相互影响等无向关系进行建模,利用贝叶斯网络对边界的两边一般不属于同类、顶点是二条或多条边界的交叉点等有向关系进行建模,以克服单层马尔可夫随机场不便描述有向关系的缺点,最后借鉴气象领域中数据同化的思想综合马尔可夫随机场与贝叶斯网络,从而改善分割效果。”

    作者回复: 其实结合很简单,无非就是用马尔可夫随机场构成贝叶斯网络,或者反其道而行。主要的问题是如何应用两者的特点。MRF对结构的表示能力更强,因而可以用来描述变量之间的关系,而BN对概率的表示能力更强,因而可以用来计算。这是我的一个猜想。

    2018-02-27
    2
  • 徐凌
    王老师,之前看新闻卡内基大学开发的德州扑克机器人用的办法不是机器学习。是不是用的是这种贝叶斯网络办法做出来的人工智能呢?您觉得未来是否还应该是机器学习最有前景呢?有没有可能机器学习和不同的其他人工智能实现办法能够整合在一起呢?

    作者回复: 我看新闻上说Libertus用的不是深度学习,机器学习还是要用的。机器学习是目前人工智能的主流技术,而且短时间内这个地位还不会受到挑战。整合是必然的,但更有可能的方式是逻辑推理这些融入到机器学习的框架下。

    2018-02-23
收起评论
2
返回
顶部