人工智能基础课
王天一
工学博士,副教授
立即订阅
12221 人已学习
课程目录
已完结 58 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 人工智能:新时代的必修课
免费
数学基础 (7讲)
01 数学基础 | 九层之台,起于累土:线性代数
02 数学基础 | 月有阴晴圆缺,此事古难全:概率论
03 数学基础 | 窥一斑而知全豹:数理统计
04 数学基础 | 不畏浮云遮望眼:最优化方法
05 数学基础 | 万物皆数,信息亦然:信息论
06 数学基础 | 明日黄花迹难寻:形式逻辑
(课外辅导)数学基础 | 拓展阅读参考书
机器学习 (10讲)
07 机器学习 | 数山有路,学海无涯:机器学习概论
08 机器学习 | 简约而不简单:线性回归
09 机器学习 | 大道至简:朴素贝叶斯方法
10 机器学习 | 衍化至繁:逻辑回归
11 机器学习 | 步步为营,有章可循:决策树
12 机器学习 | 穷则变,变则通:支持向量机
13 机器学习 | 三个臭皮匠,赛过诸葛亮:集成学习
14 机器学习 | 物以类聚,人以群分:聚类分析
15 机器学习 | 好钢用在刀刃上:降维学习
(课外辅导)机器学习 | 拓展阅读参考书
人工神经网络 (7讲)
16 人工神经网络 | 道法自然,久藏玄冥:神经网络的生理学背景
17 人工神经网络 | 一个青年才俊的意外死亡:神经元与感知器
18 人工神经网络 | 左手信号,右手误差:多层感知器
19 人工神经网络 | 各人自扫门前雪:径向基函数神经网络
20 人工神经网络 | 看不见的手:自组织特征映射
21 人工神经网络 | 水无至清,人莫至察:模糊神经网络
(课外辅导)人工神经网络 | 拓展阅读参考书
深度学习 (7讲)
22 深度学习 | 空山鸣响,静水流深:深度学习概述
23 深度学习 | 前方有路,未来可期:深度前馈网络
24 深度学习 | 小树不修不直溜:深度学习中的正则化
25 深度学习 | 玉不琢不成器:深度学习中的优化
26 深度学习 | 空竹里的秘密:自编码器
27 深度学习 | 困知勉行者勇:深度强化学习
(课外辅导)深度学习 | 拓展阅读参考书
深度学习框架下的神经网络 (5讲)
28 深度学习框架下的神经网络 | 枯木逢春:深度信念网络
29 深度学习框架下的神经网络 | 见微知著:卷积神经网络
30 深度学习框架下的神经网络 | 昨日重现:循环神经网络
31 深度学习框架下的神经网络 | 左右互搏:生成式对抗网络
32 深度学习框架下的神经网络 | 三重门:长短期记忆网络
深度学习之外的人工智能 (4讲)
33 深度学习之外的人工智能 | 一图胜千言:概率图模型
34 深度学习之外的人工智能 | 乌合之众的逆袭:集群智能
35 深度学习之外的人工智能 | 授人以鱼不如授人以渔:迁移学习
36 深度学习之外的人工智能 | 滴水藏海:知识图谱
应用场景 (4讲)
37 应用场景 | 你是我的眼:计算机视觉
38 应用场景 | 嘿, Siri:语音处理
39 应用场景 | 心有灵犀一点通:对话系统
40 应用场景 | 数字巴别塔:机器翻译
加餐 (5讲)
课外谈 | “人工智能基础课”之二三闲话
推荐阅读 | 我与人工智能的故事
直播回顾 | 机器学习必备的数学基础
第2季回归 | 这次我们来聊聊机器学习
新书 | 《裂变:秒懂人工智能的基础课》
复习课 (7讲)
一键到达 | 数学基础复习课
一键到达 | 机器学习复习课
一键到达 | 人工神经网络复习课
一键到达 | 深度学习复习课
一键到达 | 深度学习框架下的神经网络复习课
一键到达 | 深度学习之外的人工智能复习课
一键到达 | 应用场景复习课
结束语 (1讲)
结课 | 溯洄从之,道阻且长
人工智能基础课
登录|注册

17 人工神经网络 | 一个青年才俊的意外死亡:神经元与感知器

王天一 2018-01-16
1943 年,美国芝加哥大学的神经科学家沃伦·麦卡洛克和他的助手沃尔特·皮茨发表了论文《神经活动中思想内在性的逻辑演算》(A Logical Calculus of Ideas Immanent in Nervous Activity),系统阐释了他们的想法:一个极度简化的机械大脑。麦卡洛克和皮茨首先将神经元的状态二值化,再通过复杂的方式衔接不同的神经元,从而实现对抽象信息的逻辑运算。正是这篇论文宣告了人工神经网络的呱呱坠地,它传奇的故事自此徐徐展开。
与生理学上的神经网络类似,麦卡洛克和皮茨的人工神经网络也由类似神经元的基本单元构成,这一基本单元以两位发明者的名字命名为“MP 神经元(MP neuron)”。大脑中的神经元接受神经树突的兴奋性突触后电位和抑制性突触后电位,产生出沿其轴突传递的神经元的动作电位;MP 神经元则接受一个或多个输入,并对输入的线性加权进行非线性处理以产生输出。假定 MP 神经元的输入信号是个 维向量 ,第 i 个分量的权重为 ,则其输出可以写成
上式中的 通常被赋值为 +1,也就使 变成固定的偏置输入
MP 神经元中的函数 被称为传递函数,用于将加权后的输入转换为输出。传递函数通常被设计成连续且有界的非线性增函数,但在 MP 神经元中,麦卡洛克和皮茨将输入和输出都限定为二进制信号,使用的传递函数则是不连续的符号函数。符号函数以预先设定的阈值作为参数:当输入大于阈值时,符号函数输出 1,反之则输出 0。这样一来,MP 神经元的工作形式就类似于数字电路中的逻辑门,能够实现类似“逻辑与”或者“逻辑或”的功能,因而又被称为“阈值逻辑单元”。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《人工智能基础课》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(5)

  • 刘祯
    这两篇人工神经网络的文章读起来有些吃力,我又去翻看了其他的一些介绍材料,突然发现这原来就是一种决策模型,之前也有所涉及。通过多维度因素及其权重来判断最终的方向或是特定类别。文中如果能够加上配图就方便理解了,看到人类神经元与人造神经元的对比,整个体验就不一样了。
    2018-03-27
    3
  • qiang.li
    现在学习神经网络直接就知道了多层感知器可以解决异或问题,但最开始提出感知器这个模型的人才是真正的了不起!我们都是站在巨人的肩膀上!
    2018-01-25
    3
  • zc
    单层感知器解决不了异或,那就上多层嘛,这就是所谓的神经网络了
    2018-01-16
    1
  • 历尽千帆
    王老师~有一个问题~我们一直所说的“数据服从高斯分布”是指y服从高斯分布呢,还是x的每个特征都需要服从高斯分布呢?

    作者回复: 因变量y服从,因为需要用高斯分布来定义误差。

    2019-01-04
  • Andy
    王老师,在工业界,深度学习是否能解决所谓的算法问题?那相比之前红极一时的SVM今后会不会越来越没落?

    作者回复: 不太了解你所说的“算法问题”指什么,但无论是深度学习还是SVM都不是万能的,只会适用于一些特定的分类问题。
    只要有实际用途,深度学习就不会没落,但能取得多少进展也不好说,理论的缺失很可能会制约它的发展。相比之下,深入研究的话,SVM是有明确的理论意义的,它从没有被人叫做炼金术。

    2018-01-16
收起评论
5
返回
顶部