人工智能基础课
王天一
工学博士,副教授
立即订阅
12227 人已学习
课程目录
已完结 58 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 人工智能:新时代的必修课
免费
数学基础 (7讲)
01 数学基础 | 九层之台,起于累土:线性代数
02 数学基础 | 月有阴晴圆缺,此事古难全:概率论
03 数学基础 | 窥一斑而知全豹:数理统计
04 数学基础 | 不畏浮云遮望眼:最优化方法
05 数学基础 | 万物皆数,信息亦然:信息论
06 数学基础 | 明日黄花迹难寻:形式逻辑
(课外辅导)数学基础 | 拓展阅读参考书
机器学习 (10讲)
07 机器学习 | 数山有路,学海无涯:机器学习概论
08 机器学习 | 简约而不简单:线性回归
09 机器学习 | 大道至简:朴素贝叶斯方法
10 机器学习 | 衍化至繁:逻辑回归
11 机器学习 | 步步为营,有章可循:决策树
12 机器学习 | 穷则变,变则通:支持向量机
13 机器学习 | 三个臭皮匠,赛过诸葛亮:集成学习
14 机器学习 | 物以类聚,人以群分:聚类分析
15 机器学习 | 好钢用在刀刃上:降维学习
(课外辅导)机器学习 | 拓展阅读参考书
人工神经网络 (7讲)
16 人工神经网络 | 道法自然,久藏玄冥:神经网络的生理学背景
17 人工神经网络 | 一个青年才俊的意外死亡:神经元与感知器
18 人工神经网络 | 左手信号,右手误差:多层感知器
19 人工神经网络 | 各人自扫门前雪:径向基函数神经网络
20 人工神经网络 | 看不见的手:自组织特征映射
21 人工神经网络 | 水无至清,人莫至察:模糊神经网络
(课外辅导)人工神经网络 | 拓展阅读参考书
深度学习 (7讲)
22 深度学习 | 空山鸣响,静水流深:深度学习概述
23 深度学习 | 前方有路,未来可期:深度前馈网络
24 深度学习 | 小树不修不直溜:深度学习中的正则化
25 深度学习 | 玉不琢不成器:深度学习中的优化
26 深度学习 | 空竹里的秘密:自编码器
27 深度学习 | 困知勉行者勇:深度强化学习
(课外辅导)深度学习 | 拓展阅读参考书
深度学习框架下的神经网络 (5讲)
28 深度学习框架下的神经网络 | 枯木逢春:深度信念网络
29 深度学习框架下的神经网络 | 见微知著:卷积神经网络
30 深度学习框架下的神经网络 | 昨日重现:循环神经网络
31 深度学习框架下的神经网络 | 左右互搏:生成式对抗网络
32 深度学习框架下的神经网络 | 三重门:长短期记忆网络
深度学习之外的人工智能 (4讲)
33 深度学习之外的人工智能 | 一图胜千言:概率图模型
34 深度学习之外的人工智能 | 乌合之众的逆袭:集群智能
35 深度学习之外的人工智能 | 授人以鱼不如授人以渔:迁移学习
36 深度学习之外的人工智能 | 滴水藏海:知识图谱
应用场景 (4讲)
37 应用场景 | 你是我的眼:计算机视觉
38 应用场景 | 嘿, Siri:语音处理
39 应用场景 | 心有灵犀一点通:对话系统
40 应用场景 | 数字巴别塔:机器翻译
加餐 (5讲)
课外谈 | “人工智能基础课”之二三闲话
推荐阅读 | 我与人工智能的故事
直播回顾 | 机器学习必备的数学基础
第2季回归 | 这次我们来聊聊机器学习
新书 | 《裂变:秒懂人工智能的基础课》
复习课 (7讲)
一键到达 | 数学基础复习课
一键到达 | 机器学习复习课
一键到达 | 人工神经网络复习课
一键到达 | 深度学习复习课
一键到达 | 深度学习框架下的神经网络复习课
一键到达 | 深度学习之外的人工智能复习课
一键到达 | 应用场景复习课
结束语 (1讲)
结课 | 溯洄从之,道阻且长
人工智能基础课
登录|注册

34 深度学习之外的人工智能 | 乌合之众的逆袭:集群智能

王天一 2018-02-24
梅拉妮·米切尔在《复杂》中举过一个例子:在巴西的亚马逊雨林中,几十万只行军蚁(已知的行为最简单的生物)正在行进。用现在时髦的话说,这是一支去中心化、自组织的大军。在这个蚁蚁平等的团体中,单个蚂蚁几乎没有视力,也不具备什么智能。可聚集成团体的他们组成了扇形的团状,一路风卷残云地吃掉所有能吃掉的,带走所有能带走的。高效的它们只需一天就能消灭雨林里一个足球场面积内的所有食物。到了夜间,蚂蚁会自发形成一个球体,保护起蚁后和幼蚁,天亮后又各就各位,继续行军。
快速飞行的蝙蝠群在狭窄的洞穴中互不碰撞,大雁群在飞行时自发地排列成人字形、海洋鱼群通过几何构型充分利用水流的能量...... 这些自然界中的集群行为早早就吸引了人类的注意。在由大量数目的生物个体构成的群体中,不同个体之间的局部行为并非互不相关,而是互相作用和影响,进而作为整体化的协调有序的行为产生对外界环境的响应。生物群体正是通过个体行为之间的互动达到“整体大于部分之和”的有利效果,就像一百只行军蚁只会横冲直撞,一百万只行军蚁却能整齐划一。
实现集群智能的智能体必须能够在环境中表现出自主性、反应性、学习性和自适应性等一系列智能特性,但这并不意味着群体中的个体都很复杂。集群智能的核心是由众多简单个体组成的群体能够通过相互之间的简单合作来实现某些功能,完成某些任务。其中,“简单个体”是指单个个体只具有简单的能力或智能,“简单合作”是指个体与其邻近的个体只能进行某种简单的直接通信或通过改变环境间接与其它个体通信,从而可以相互影响、协同动作。
与高大上的深度学习不同,集群智能既不需要汪洋浩瀚的物理数据,也不需要艰深晦涩的数学算法,难道蚂蚁和大雁会计算微积分吗?集群智能的基础只是作用于个体的运行准则和作用于整体的通用目标,这些目标通常还都很简单。可正是数量足够庞大的简单规则才孕育出了整体意义上的高级智能,这也验证了量变引发质变的哲学观点。
从抽象的角度来说,群体行为是大量自驱动个体的集体运动,每个自驱动个体都遵守一定的行为准则,当它们按照这些准则相互作用时就会表现出上述的复杂行为。群体本身不具备中心化的结构,而是通过个体之间的识别与协同达成稳定的分布式结构。这个分布式结构会随着环境的变化,以自身为参考系不断趋于新的稳定。集群智能(swarm intelligence)正是群居性生物通过协作表现出的自组织与分布式的宏观智能行为,它具有如下的特点:
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《人工智能基础课》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(2)

  • yunfeng
    1.集群智能看似由单个简单的个体,通过各自简单的动作协作出一个复杂而微妙的整体性功能。如果我们人体自身一般,比如打词留言,大脑、手、眼三者之间彼此独立,但是彼此之间的协作,让人感慨其强大。人体神经元的传递与反馈信息之强大,需要复制出来,目前而言是棘手的。一旦突破,集群智能将掀起新的世纪浪潮。

    2.集群智能与神经网络的关系,若将集群智能的几个特点一一应用到神经网络,时间复杂度和鲁棒性都会得到极大的提升。

    作者回复: 我觉得关键还是在交互机制,自然界中动物集群的个体的交互肯定不是简单的数学函数能完全刻画的。

    2018-02-27
    2
  • 林彦
    看了一些参考的文章,其中神经演化(neuro evolution)中的一些算法觉得可以看作把集群智能的一些方法应用于神经网络的进化。

    比如OpenAI 使用worker算法,教会一个主算法完成任务的最佳方法。OpenAI 团队设置了 1440 个 worker 算法来完成 Atari 游戏。这些 worker 会一直玩游戏直到 Game Over,然后它们会把自己的分数汇报给 Master(主人)。OpenAI 的研究人员复制那些获得了最高分数的算法,并且让副本产生随机突变。突变后的 worker 会回到整个循环里,在整个过程中不断重复,有利的突变得到奖励,有害(不好)的则被淘汰。

    worker找到最佳的解决方案;Master是信息的中心枢纽。

    Evolving neural networks through augmenting topologies这篇论文的方法我觉得可以拓展成神经网络通过集群智能来适应变化。

    作者回复: 集群智能一般是去中心化的结构,看起来OpenAI那个像是上帝视角下的进化。我觉得神经网络可以借鉴生物集群的交互方式,真正的交互机制未必会只是一个数学函数那么简单。至于你提到的这篇文章,似乎是用进化机制在初始网络中选择待激活的神经元。

    2018-02-27
收起评论
2
返回
顶部