人工智能基础课
王天一
工学博士,副教授
立即订阅
12221 人已学习
课程目录
已完结 58 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 人工智能:新时代的必修课
免费
数学基础 (7讲)
01 数学基础 | 九层之台,起于累土:线性代数
02 数学基础 | 月有阴晴圆缺,此事古难全:概率论
03 数学基础 | 窥一斑而知全豹:数理统计
04 数学基础 | 不畏浮云遮望眼:最优化方法
05 数学基础 | 万物皆数,信息亦然:信息论
06 数学基础 | 明日黄花迹难寻:形式逻辑
(课外辅导)数学基础 | 拓展阅读参考书
机器学习 (10讲)
07 机器学习 | 数山有路,学海无涯:机器学习概论
08 机器学习 | 简约而不简单:线性回归
09 机器学习 | 大道至简:朴素贝叶斯方法
10 机器学习 | 衍化至繁:逻辑回归
11 机器学习 | 步步为营,有章可循:决策树
12 机器学习 | 穷则变,变则通:支持向量机
13 机器学习 | 三个臭皮匠,赛过诸葛亮:集成学习
14 机器学习 | 物以类聚,人以群分:聚类分析
15 机器学习 | 好钢用在刀刃上:降维学习
(课外辅导)机器学习 | 拓展阅读参考书
人工神经网络 (7讲)
16 人工神经网络 | 道法自然,久藏玄冥:神经网络的生理学背景
17 人工神经网络 | 一个青年才俊的意外死亡:神经元与感知器
18 人工神经网络 | 左手信号,右手误差:多层感知器
19 人工神经网络 | 各人自扫门前雪:径向基函数神经网络
20 人工神经网络 | 看不见的手:自组织特征映射
21 人工神经网络 | 水无至清,人莫至察:模糊神经网络
(课外辅导)人工神经网络 | 拓展阅读参考书
深度学习 (7讲)
22 深度学习 | 空山鸣响,静水流深:深度学习概述
23 深度学习 | 前方有路,未来可期:深度前馈网络
24 深度学习 | 小树不修不直溜:深度学习中的正则化
25 深度学习 | 玉不琢不成器:深度学习中的优化
26 深度学习 | 空竹里的秘密:自编码器
27 深度学习 | 困知勉行者勇:深度强化学习
(课外辅导)深度学习 | 拓展阅读参考书
深度学习框架下的神经网络 (5讲)
28 深度学习框架下的神经网络 | 枯木逢春:深度信念网络
29 深度学习框架下的神经网络 | 见微知著:卷积神经网络
30 深度学习框架下的神经网络 | 昨日重现:循环神经网络
31 深度学习框架下的神经网络 | 左右互搏:生成式对抗网络
32 深度学习框架下的神经网络 | 三重门:长短期记忆网络
深度学习之外的人工智能 (4讲)
33 深度学习之外的人工智能 | 一图胜千言:概率图模型
34 深度学习之外的人工智能 | 乌合之众的逆袭:集群智能
35 深度学习之外的人工智能 | 授人以鱼不如授人以渔:迁移学习
36 深度学习之外的人工智能 | 滴水藏海:知识图谱
应用场景 (4讲)
37 应用场景 | 你是我的眼:计算机视觉
38 应用场景 | 嘿, Siri:语音处理
39 应用场景 | 心有灵犀一点通:对话系统
40 应用场景 | 数字巴别塔:机器翻译
加餐 (5讲)
课外谈 | “人工智能基础课”之二三闲话
推荐阅读 | 我与人工智能的故事
直播回顾 | 机器学习必备的数学基础
第2季回归 | 这次我们来聊聊机器学习
新书 | 《裂变:秒懂人工智能的基础课》
复习课 (7讲)
一键到达 | 数学基础复习课
一键到达 | 机器学习复习课
一键到达 | 人工神经网络复习课
一键到达 | 深度学习复习课
一键到达 | 深度学习框架下的神经网络复习课
一键到达 | 深度学习之外的人工智能复习课
一键到达 | 应用场景复习课
结束语 (1讲)
结课 | 溯洄从之,道阻且长
人工智能基础课
登录|注册

26 深度学习 | 空竹里的秘密:自编码器

王天一 2018-02-06
自编码器(auto-encoder)是一类执行无监督学习任务的神经网络结构,它的目的是学习一组数据的重新表达,也就是编码。
在结构上,自编码器是包含若干隐藏层的深度前馈神经网络,其独特之处是输入层和输出层的单元数目相等;在功能上,自编码器的目的不是根据输入来预测输出,而是重建网络的输入,正是这样的功能将自编码器和其他神经网络区分开来。由于自编码器的图形表示像极了杂技中使用的道具空竹,因而也得了个“空竹网络”的雅号。
自编码器结构由编码映射和解码映射两部分组成。如果将编码映射记作 ,解码映射记作 ,自编码器的作用就是将输入 改写为 ,这相当于将输入从一个表象下转换到另一个表象下来表示,就像量子力学中粒子不同表象之间的变化一样。如果以均方误差作为网络训练中的损失函数,自编码器的目的就是找到使均方误差最小的编解码映射的组合,即
在最简单的情形,也就是只有一个隐藏层的情形下,自编码器隐藏层的输出就是编码映射。当隐藏层的维度小于输入数据的维度时,这就是个欠完备(undercomplete)的自编码器。欠完备自编码器的作用相当于对输入信号做了主成分分析,隐藏层的 个线性神经元在均方误差准则下保留贡献最大的 个主成分,原始信号就被投影到由这 个主成分所展成的新空间上。在自编码器的另一端,输出层将隐藏层的输出转换为自编码器的整体输出,从而实现了解码映射的功能。
如果隐藏神经元的传递函数是非线性的,编码映射就能够捕捉到输入分布中更加复杂的特征,均方误差准则也可以写成对数似然函数 的形式。当误差 满足高斯分布时,均方误差和最大似然是等价的。
从信息论的角度看,编码映射可以看成是对输入信源 的有损压缩。有损压缩的特点决定了它不可能对所有输入都具有较小的信息量损失,因而学习的作用就是习得在训练数据集上更加精确的映射,并希望这样的映射在测试数据上同样表现良好,也就是使自编码器具有较好的泛化性能。
当自编码器的隐藏单元数目大于输入信号的维度,也就是编码映射的分量数目大于输入信号的分量数目时,这就是个过度完备(overcomplete)的自编码器。过度完备的自编码器面临的一个严重问题是如果没有额外约束的话,那么它可能只能够习得识别功能,得到的编码映射和解码映射都是恒等映射,这显然是白费功夫。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《人工智能基础课》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(4)

  • 林彦
    基于人工经验的特征提取是基于使用者自己对特征,特征组合(含特征运算)与模型预测关系的理解做的特征处理。好比计算一个图形的各个角的度数,角的数量等来预测是哪种形状的图形。

    深度网络的特征提取是尽量让每一层网络抽象出上层数据的共性,基于这些共性做出判断作为下一层网络的输入再推导更抽象的特征。每层能推导出什么特征很多时候不是根据经验或使用者对特征与预测结果能解释清楚的关系来选择的,更多是基于整个网络的表现决定的。好比文中提到的例子里第一层网络是抽象出边缘属性,第二层是抽象出轮廓属性,接下来再推断图形。现实中是不是用3层,每层的输出有什么直观的含义事先我的理解是使用者并不知道。

    作者回复: 没错,我觉得人工特征都是根据已有的知识经验选取的,深度学习提取的特征则更可能包含一些我们还没有发现的insight。

    2018-02-06
    3
  • 历尽千帆
    数据可视化的数据降噪和降维被认为是自编码器的两个主要的实际应用。
    2019-01-11
  • 历尽千帆
    “当误差满足高斯分布时,均方误差和最大似然是等价的”这句话是什么意思呢,王老师?均方误差是怎么和最大似然等价的,一脸茫然

    作者回复: 这话确实写的有问题,应该是最小均方误差估计的结果和最大似然估计的结果是等价的,两种方法等效。

    2019-01-11
  • 大聪小才
    如人眼的可视摄入,人脑的个性过滤,人嘴的个性化表达?只是这里的个性变成机器的单一功能的发挥。
    2018-02-15
收起评论
4
返回
顶部