人工智能基础课
王天一
工学博士,副教授
立即订阅
12221 人已学习
课程目录
已完结 58 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 人工智能:新时代的必修课
免费
数学基础 (7讲)
01 数学基础 | 九层之台,起于累土:线性代数
02 数学基础 | 月有阴晴圆缺,此事古难全:概率论
03 数学基础 | 窥一斑而知全豹:数理统计
04 数学基础 | 不畏浮云遮望眼:最优化方法
05 数学基础 | 万物皆数,信息亦然:信息论
06 数学基础 | 明日黄花迹难寻:形式逻辑
(课外辅导)数学基础 | 拓展阅读参考书
机器学习 (10讲)
07 机器学习 | 数山有路,学海无涯:机器学习概论
08 机器学习 | 简约而不简单:线性回归
09 机器学习 | 大道至简:朴素贝叶斯方法
10 机器学习 | 衍化至繁:逻辑回归
11 机器学习 | 步步为营,有章可循:决策树
12 机器学习 | 穷则变,变则通:支持向量机
13 机器学习 | 三个臭皮匠,赛过诸葛亮:集成学习
14 机器学习 | 物以类聚,人以群分:聚类分析
15 机器学习 | 好钢用在刀刃上:降维学习
(课外辅导)机器学习 | 拓展阅读参考书
人工神经网络 (7讲)
16 人工神经网络 | 道法自然,久藏玄冥:神经网络的生理学背景
17 人工神经网络 | 一个青年才俊的意外死亡:神经元与感知器
18 人工神经网络 | 左手信号,右手误差:多层感知器
19 人工神经网络 | 各人自扫门前雪:径向基函数神经网络
20 人工神经网络 | 看不见的手:自组织特征映射
21 人工神经网络 | 水无至清,人莫至察:模糊神经网络
(课外辅导)人工神经网络 | 拓展阅读参考书
深度学习 (7讲)
22 深度学习 | 空山鸣响,静水流深:深度学习概述
23 深度学习 | 前方有路,未来可期:深度前馈网络
24 深度学习 | 小树不修不直溜:深度学习中的正则化
25 深度学习 | 玉不琢不成器:深度学习中的优化
26 深度学习 | 空竹里的秘密:自编码器
27 深度学习 | 困知勉行者勇:深度强化学习
(课外辅导)深度学习 | 拓展阅读参考书
深度学习框架下的神经网络 (5讲)
28 深度学习框架下的神经网络 | 枯木逢春:深度信念网络
29 深度学习框架下的神经网络 | 见微知著:卷积神经网络
30 深度学习框架下的神经网络 | 昨日重现:循环神经网络
31 深度学习框架下的神经网络 | 左右互搏:生成式对抗网络
32 深度学习框架下的神经网络 | 三重门:长短期记忆网络
深度学习之外的人工智能 (4讲)
33 深度学习之外的人工智能 | 一图胜千言:概率图模型
34 深度学习之外的人工智能 | 乌合之众的逆袭:集群智能
35 深度学习之外的人工智能 | 授人以鱼不如授人以渔:迁移学习
36 深度学习之外的人工智能 | 滴水藏海:知识图谱
应用场景 (4讲)
37 应用场景 | 你是我的眼:计算机视觉
38 应用场景 | 嘿, Siri:语音处理
39 应用场景 | 心有灵犀一点通:对话系统
40 应用场景 | 数字巴别塔:机器翻译
加餐 (5讲)
课外谈 | “人工智能基础课”之二三闲话
推荐阅读 | 我与人工智能的故事
直播回顾 | 机器学习必备的数学基础
第2季回归 | 这次我们来聊聊机器学习
新书 | 《裂变:秒懂人工智能的基础课》
复习课 (7讲)
一键到达 | 数学基础复习课
一键到达 | 机器学习复习课
一键到达 | 人工神经网络复习课
一键到达 | 深度学习复习课
一键到达 | 深度学习框架下的神经网络复习课
一键到达 | 深度学习之外的人工智能复习课
一键到达 | 应用场景复习课
结束语 (1讲)
结课 | 溯洄从之,道阻且长
人工智能基础课
登录|注册

35 深度学习之外的人工智能 | 授人以鱼不如授人以渔:迁移学习

王天一 2018-02-27
无论是小学还是大学,在教学中都会强调的一个问题就是“举一反三”,将学到的规律灵活地运用到其他相似的场景下。而要想让人工智能学会举一反三,用到的就是迁移学习技术
迁移学习(transfer learning)是运用已学习的知识来求解不同但相关领域问题的新的机器学习方法,目的是让机器“学会学习”。当训练数据和测试数据来自不同的特征空间或遵循不同的概率分布时,如果能够将从训练数据上习得的知识迁移到测试数据上,就可以回避掉复杂的数据标签工作,进而提升学习性能。迁移学习就是解决这个问题的学习框架,它能够对仅有少量甚至没有标签样本进行学习,从而解决目标问题。
许多机器学习和数据挖掘算法都建立在两个主要假设之上:第一,训练样本和测试数据必须处于相同的特征空间并具有相同的分布;第二,有足够的高质量训练样本作为学习资源。
遗憾的是,这两个假设在大多数实际应用中难以成立。一方面,训练数据和测试数据在时间上的差异可能导致分布规律的变化;另一方面,对大量数据进行标注不仅费时费力,还容易受到知识产权问题的影响。一旦没有数据,再好的深度学习方法都是无源之水,无本之木,难以发挥作用。
迁移学习的出现给解决这些问题带来了一丝曙光。其实说到底,迁移学习可以看作是提升学习算法泛化性能的一种思路。现实世界并非标准化和结构化的数据集,而是杂乱无章的万花筒,包含着大量从未在训练集中出现过的全新场景,这足以让许多在训练集上无往不胜的人工智能变成真实世界中的“人工智障”。迁移学习有助于算法处理全新场景下的问题,利用一般化的规律去应对富于变化的环境
在迁移学习中,已有的知识(包括样本数据集及其分布)叫做源域,要学习的新知识叫做目标域。同样,待解决的任务也可以分为源任务目标任务。根据源域 / 目标域和源任务 / 目标任务的关系,迁移学习问题可以划分为以下三类:
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《人工智能基础课》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(2)

  • 桃园悠然在
    王老师好,自动驾驶算法应用于扫地机器人的路径规划算不算迁移学习的实际应用?
    2018-11-02
  • 林彦
    谢谢王教授分享。

    请问基于特征选择的迁移学习“从目标域数据中选择特有的特征来对共同特征训练出的通用分类器进行精化”,是从已经选择出的共同特征中,根据其与目标域的样本类别的相关程度,去除一些相关程度低的共同特征吗?

    感觉目前迁移样本或特征的选择,权重还没有比较科学可靠的标准。有些依赖于经验,有些求解比较困难。应用上通过人类经验的认知,在一些特定领域,比如图像识别,序列信号识别是有可能有一些更通用的底层的方法或模型能迁移到一个新的领域来提升其学习的表现或速度。有其价值,如何取得突破我的认知还不够判断力有限。

    作者回复: 一般来说,源域和目标域只有部分重合的特征,这些共有特征构成了迁移学习的基础。但据此把源域的学习结果套用到目标域上,相当于只考虑了两者的共性,而忽略了目标域的个性。这时就需要用目标域的独有特征,也就是共同特征之外的feature专门对目标域加以优化。就相当于我学习了学霸的学习方法,再根据自身情况加以微调,找到最适合自己的方法。
    权重确定是可以转化成最优化问题的,其中的方法就复杂了,但肯定依赖于具体问题。

    2018-02-27
收起评论
2
返回
顶部