人工智能基础课
王天一
工学博士,副教授
立即订阅
12162 人已学习
课程目录
已完结 58 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 人工智能:新时代的必修课
免费
数学基础 (7讲)
01 数学基础 | 九层之台,起于累土:线性代数
02 数学基础 | 月有阴晴圆缺,此事古难全:概率论
03 数学基础 | 窥一斑而知全豹:数理统计
04 数学基础 | 不畏浮云遮望眼:最优化方法
05 数学基础 | 万物皆数,信息亦然:信息论
06 数学基础 | 明日黄花迹难寻:形式逻辑
(课外辅导)数学基础 | 拓展阅读参考书
机器学习 (10讲)
07 机器学习 | 数山有路,学海无涯:机器学习概论
08 机器学习 | 简约而不简单:线性回归
09 机器学习 | 大道至简:朴素贝叶斯方法
10 机器学习 | 衍化至繁:逻辑回归
11 机器学习 | 步步为营,有章可循:决策树
12 机器学习 | 穷则变,变则通:支持向量机
13 机器学习 | 三个臭皮匠,赛过诸葛亮:集成学习
14 机器学习 | 物以类聚,人以群分:聚类分析
15 机器学习 | 好钢用在刀刃上:降维学习
(课外辅导)机器学习 | 拓展阅读参考书
人工神经网络 (7讲)
16 人工神经网络 | 道法自然,久藏玄冥:神经网络的生理学背景
17 人工神经网络 | 一个青年才俊的意外死亡:神经元与感知器
18 人工神经网络 | 左手信号,右手误差:多层感知器
19 人工神经网络 | 各人自扫门前雪:径向基函数神经网络
20 人工神经网络 | 看不见的手:自组织特征映射
21 人工神经网络 | 水无至清,人莫至察:模糊神经网络
(课外辅导)人工神经网络 | 拓展阅读参考书
深度学习 (7讲)
22 深度学习 | 空山鸣响,静水流深:深度学习概述
23 深度学习 | 前方有路,未来可期:深度前馈网络
24 深度学习 | 小树不修不直溜:深度学习中的正则化
25 深度学习 | 玉不琢不成器:深度学习中的优化
26 深度学习 | 空竹里的秘密:自编码器
27 深度学习 | 困知勉行者勇:深度强化学习
(课外辅导)深度学习 | 拓展阅读参考书
深度学习框架下的神经网络 (5讲)
28 深度学习框架下的神经网络 | 枯木逢春:深度信念网络
29 深度学习框架下的神经网络 | 见微知著:卷积神经网络
30 深度学习框架下的神经网络 | 昨日重现:循环神经网络
31 深度学习框架下的神经网络 | 左右互搏:生成式对抗网络
32 深度学习框架下的神经网络 | 三重门:长短期记忆网络
深度学习之外的人工智能 (4讲)
33 深度学习之外的人工智能 | 一图胜千言:概率图模型
34 深度学习之外的人工智能 | 乌合之众的逆袭:集群智能
35 深度学习之外的人工智能 | 授人以鱼不如授人以渔:迁移学习
36 深度学习之外的人工智能 | 滴水藏海:知识图谱
应用场景 (4讲)
37 应用场景 | 你是我的眼:计算机视觉
38 应用场景 | 嘿, Siri:语音处理
39 应用场景 | 心有灵犀一点通:对话系统
40 应用场景 | 数字巴别塔:机器翻译
加餐 (5讲)
课外谈 | “人工智能基础课”之二三闲话
推荐阅读 | 我与人工智能的故事
直播回顾 | 机器学习必备的数学基础
第2季回归 | 这次我们来聊聊机器学习
新书 | 《裂变:秒懂人工智能的基础课》
复习课 (7讲)
一键到达 | 数学基础复习课
一键到达 | 机器学习复习课
一键到达 | 人工神经网络复习课
一键到达 | 深度学习复习课
一键到达 | 深度学习框架下的神经网络复习课
一键到达 | 深度学习之外的人工智能复习课
一键到达 | 应用场景复习课
结束语 (1讲)
结课 | 溯洄从之,道阻且长
人工智能基础课
登录|注册

16 人工神经网络 | 道法自然,久藏玄冥:神经网络的生理学背景

王天一 2018-01-13
当下,人工智能主流的研究方法是连接主义。连接主义学派并不认为人工智能源于数理逻辑,也不认为智能的关键在于思维方式。这一学派把智能建立在神经生理学和认知科学的基础上,强调智能活动是将大量简单的单元通过复杂方式相互连接后并行运行的结果。
基于以上的思路,连接主义学派通过人工构建神经网络的方式来模拟人类智能。它以工程技术手段模拟人脑神经系统的结构和功能,通过大量的非线性并行处理器模拟人脑中众多的神经元,用处理器复杂的连接关系模拟人脑中众多神经元之间的突触行为。相较符号主义学派,连接主义学派显然更看重是智能赖以实现的“硬件”。
人类智能的本质是什么?这是认知科学的基本问题。根据自底向上的分析方法,人类智能的本质很大程度上取决于“什么是认知的基本单元”。目前的理论和实验结果表明,要分析认知基本单元,合理的方法既不是物理推理也不是数学分析,而是设计科学实验加以验证。大量的实验结果显示,从被认知的客体角度来看,认知基本单元是知觉组织形成的“知觉物体”。
知觉物体概念的形成具备其特殊的物理基础。脑神经科学研究表明,人脑由大约千亿个神经细胞及亿亿个神经突触组成,这些神经细胞及其突触共同构成了一个庞大的生物神经网络。每个神经细胞通过突触与其他神经细胞进行连接与通信。当通过突触所接收到的信号强度超过某个阈值时,神经细胞便会进入激活状态,并通过突触向上层神经细胞发送激活信号。人类所有与意识及智能相关的活动,都是通过特定区域神经细胞间的相互激活与协同工作而实现的。
作为一个复杂的多级系统,大脑思维来源于功能的逐级整合。神经元的功能被整合为神经网络的功能,神经网络的功能被整合为神经回路的功能,神经回路的功能最终被整合为大脑的思维功能。但巧妙的是,在逐级整合的过程中,每一个层次上实现的都是”1 + 1 > 2”的效果,在较高层次上产生了较低层次的每个子系统都不具备的“突生功能”。这就意味着思维问题不能用还原论的方法来解决,即不能靠发现单个细胞的结构和物质分子来解决。揭示出能把大量神经元组装成一个功能系统的设计原理,这才是问题的实质所在
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《人工智能基础课》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(6)

  • prajba
    逐篇读下来读到这一篇开头的时候突然想到,探索机器智能其实也是在穷究人类智能的本质。王老师的这个系列写的实在精彩,每篇都可称精品。
    2018-01-27
    6
  • Sine:极客时间真的很差
    人工神经网络,和神经科学,没有关系
    2018-03-03
    2
  • 行行
    生物神经元的不可以用数学来解释的特殊功能,是指先天的生存本能跟自我⊙∀⊙嘛?难道说他们的神经网络各个神经元层层馈,处理信号的方式跟人工神经网络的方式不一样。老师他们的区别是什么?有没有异曲同工的地方?我该怎么理解生物神经网络与人工神经网络的差异性?谢谢老师ớ ₃ờ

    作者回复: 不严谨地说,人工神经网络借鉴了生物神经网络的思想,是超级简化版的生物神经网络。处理信号的方式我认为生物网络要复杂很多,至于它的具体机制到底是什么就超出讨论范围了。

    2018-03-04
  • 行行
    有些人工神经网络中每个神经元的连接数与猫一样多,这样的话,赋予它的智能体现的就是各方面像猫一样还是说在某单方面可能比猫还精准,而没有猫那么全的…那又是为什么?是什么原因限制的呐?

    作者回复: 我觉得是神经元的交互,或者传递信息的方式。生物体神经元之间的互动肯定不会是简单的数学函数就能描述的。

    2018-03-02
  • 行行
    你确定你对我们的王老师没有非分之想吗?哼…我不信!
    2018-03-01
  • 行行
    神经网络是具有适应性的简单单元组成的广泛并行互联的网络。 “适应性”跟“广泛”应该有所指…可我我不知道?请老师帮我解答…谢谢!

    作者回复: 适应性指的是具有学习功能,广泛我理解是指神经元之间有类似全连接的方式,每个神经元都和多个其他神经元连接。

    2018-02-28
收起评论
6
返回
顶部