你好,我是月影。
在数据处理的过程中,我们经常遇到两种情况:一种是数据太少,我们没法找到有用的信息,也就无法进行可视化呈现。另一种是数据太多,信息纷繁复杂,我们经常会迷失在信息海洋中,无法选择合适的可视化呈现方式,最终也表达不了多少有意义的内容。
那你可能想问了,想要解决这两种情况,我们能用上节课讲过的三种数据处理方法吗?事实上,上节课的方法是数据可视化的基本方法论,你可以在可视化过程中借鉴它们的思路,但是它们并不系统。
因此,我们在探索数据可视化的时候,还需要一个合理的数据可视化分析过程作为参照。从这一节课开始,我们就来系统地讨论数据处理的一般方法。
数据可视化的一般过程
针对课程一开始这两种情况,就算是不学数据处理的一般思路,我们也知道,如果你的数据太少,你要想办法获取更多的数据,而如果你的数据太多,那你就需要学会运用正确的方法不断迭代、筛选。而且,数据过多的情况我们遇到得更多。
当你学会在众多复杂的数据中准确地抽取信息,把这些数据的某一面可视化出来的时候,你就已经能够轻松地从数据中得到你想要的内容。通过这个过程,有可能让你从数据的一面获得启发,从而发现数据其他方面的有趣内容,进而产生出更多不同的图表,让数据呈现出更多的意义。