大规模数据处理实战
蔡元楠
Google Brain资深工程师
立即订阅
8443 人已学习
课程目录
已完结 46 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 从这里开始,带你走上硅谷一线系统架构师之路
免费
模块一 | 直通硅谷大规模数据处理技术 (3讲)
01 | 为什么MapReduce会被硅谷一线公司淘汰?
02 | MapReduce后谁主沉浮:怎样设计下一代数据处理技术?
03 | 大规模数据处理初体验:怎样实现大型电商热销榜?
模块二 | 实战学习大规模数据处理基本功 (8讲)
04 | 分布式系统(上):学会用服务等级协议SLA来评估你的系统
05 | 分布式系统(下):架构师不得不知的三大指标
06 | 如何区分批处理还是流处理?
07 | Workflow设计模式:让你在大规模数据世界中君临天下
08 | 发布/订阅模式:流处理架构中的瑞士军刀
09 | CAP定理:三选二,架构师必须学会的取舍
10 | Lambda架构:Twitter亿级实时数据分析架构背后的倚天剑
11 | Kappa架构:利用Kafka锻造的屠龙刀
模块三 | 抽丝剥茧剖析Apache Spark设计精髓 (10讲)
12 | 我们为什么需要Spark?
13 | 弹性分布式数据集:Spark大厦的地基(上)
14 | 弹性分布式数据集:Spark大厦的地基(下)
15 | Spark SQL:Spark数据查询的利器
16 | Spark Streaming:Spark的实时流计算API
17 | Structured Streaming:如何用DataFrame API进行实时数据分析?
18 | Word Count:从零开始运行你的第一个Spark应用
19 | 综合案例实战:处理加州房屋信息,构建线性回归模型
20 | 流处理案例实战:分析纽约市出租车载客信息
21 | 深入对比Spark与Flink:帮你系统设计两开花
模块四 | Apache Beam为何能一统江湖 (8讲)
22 | Apache Beam的前世今生
23 | 站在Google的肩膀上学习Beam编程模型
24 | PCollection:为什么Beam要如此抽象封装数据?
25 | Transform:Beam数据转换操作的抽象方法
26 | Pipeline:Beam如何抽象多步骤的数据流水线?
27 | Pipeline I/O: Beam数据中转的设计模式
28 | 如何设计创建好一个Beam Pipeline?
29 | 如何测试Beam Pipeline?
模块五 | 决战 Apache Beam 真实硅谷案例 (7讲)
30 | Apache Beam实战冲刺:Beam如何run everywhere?
31 | WordCount Beam Pipeline实战
32 | Beam Window:打通流处理的任督二脉
33 | 横看成岭侧成峰:再战Streaming WordCount
34 | Amazon热销榜Beam Pipeline实战
35 | Facebook游戏实时流处理Beam Pipeline实战(上)
36 | Facebook游戏实时流处理Beam Pipeline实战(下)
模块六 | 大规模数据处理的挑战与未来 (4讲)
37 | 5G时代,如何处理超大规模物联网数据
38 | 大规模数据处理在深度学习中如何应用?
39 | 从SQL到Streaming SQL:突破静态数据查询的次元
40 | 大规模数据处理未来之路
专栏加餐 | 特别福利 (4讲)
FAQ第一期 | 学习大规模数据处理需要什么基础?
加油站 | Practice makes perfect!
FAQ第二期 | Spark案例实战答疑
FAQ第三期 | Apache Beam基础答疑
结束语 (1讲)
结束语 | 世间所有的相遇,都是久别重逢
大规模数据处理实战
登录|注册

35 | Facebook游戏实时流处理Beam Pipeline实战(上)

蔡元楠 2019-07-15
你好,我是蔡元楠。
今天我要与你分享的主题是“Facebook 游戏实时流处理 Beam Pipeline 实战”。
Facebook 这个社交平台我相信你一定早有耳闻。它除了能够让用户发送消息给好友,分享自己的动态图片和视频之外,还通过自身的 App Center 管理着各式各样的小游戏。许多游戏开发商借助 Facebook 的好友邀请机制让自己的 App 火了一把。
曾经有一段时间,在 Facebook 上有一款名为糖果传奇(Candy Crush Saga)的游戏风靡了整个北美。各个年龄层的玩家都会在空闲的时间拿出手机,过五关斩六将,希望尽快突破更多的关卡,并且获得高分。
当然了,除了消除游戏本身带来的乐趣以外,可以在 Facebook 里和自己的好友进行积分排名比拼也是另外一个能吸引用户的地方。
想要一个类似 Facebook 这样的好友间积分排行榜,你可以有很多种实现方式以及各种优化方法。那么,如果我们要利用 Apache Beam 的话,该怎样实现一个类似的游戏积分排行榜呢?
今天我就来和你一起研究,要如何利用 Apache Beam 的数据流水线来实现一个我们自定义的简单游戏积分排行榜。
为了简化整个游戏积分排行榜案例的说明,我们先来做几个方面的假设:
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《大规模数据处理实战》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(2)

  • suncar
    老师您好,请问一下可不可以将这种案例放一份到github上。我们可以拉到本地进行调试。在这个过程中避免不了出现各种异常,以方便更好的解决和深入了解。谢谢
    2019-07-16
    6
  • bingo
    老师你好,我有个疑问。这里的用户数据可不可以全部放在Hbase里。
    由于好友之间的排名查询涉及的数据量少,所以直接查询Hbase。而全局的总排名要涉及到所有的玩家,数据量大,这个使用流水线处理
    2019-09-21
收起评论
2
返回
顶部