大规模数据处理实战
蔡元楠
Google Brain资深工程师
立即订阅
8443 人已学习
课程目录
已完结 46 讲
0/4登录后,你可以任选4讲全文学习。
开篇词 (1讲)
开篇词 | 从这里开始,带你走上硅谷一线系统架构师之路
免费
模块一 | 直通硅谷大规模数据处理技术 (3讲)
01 | 为什么MapReduce会被硅谷一线公司淘汰?
02 | MapReduce后谁主沉浮:怎样设计下一代数据处理技术?
03 | 大规模数据处理初体验:怎样实现大型电商热销榜?
模块二 | 实战学习大规模数据处理基本功 (8讲)
04 | 分布式系统(上):学会用服务等级协议SLA来评估你的系统
05 | 分布式系统(下):架构师不得不知的三大指标
06 | 如何区分批处理还是流处理?
07 | Workflow设计模式:让你在大规模数据世界中君临天下
08 | 发布/订阅模式:流处理架构中的瑞士军刀
09 | CAP定理:三选二,架构师必须学会的取舍
10 | Lambda架构:Twitter亿级实时数据分析架构背后的倚天剑
11 | Kappa架构:利用Kafka锻造的屠龙刀
模块三 | 抽丝剥茧剖析Apache Spark设计精髓 (10讲)
12 | 我们为什么需要Spark?
13 | 弹性分布式数据集:Spark大厦的地基(上)
14 | 弹性分布式数据集:Spark大厦的地基(下)
15 | Spark SQL:Spark数据查询的利器
16 | Spark Streaming:Spark的实时流计算API
17 | Structured Streaming:如何用DataFrame API进行实时数据分析?
18 | Word Count:从零开始运行你的第一个Spark应用
19 | 综合案例实战:处理加州房屋信息,构建线性回归模型
20 | 流处理案例实战:分析纽约市出租车载客信息
21 | 深入对比Spark与Flink:帮你系统设计两开花
模块四 | Apache Beam为何能一统江湖 (8讲)
22 | Apache Beam的前世今生
23 | 站在Google的肩膀上学习Beam编程模型
24 | PCollection:为什么Beam要如此抽象封装数据?
25 | Transform:Beam数据转换操作的抽象方法
26 | Pipeline:Beam如何抽象多步骤的数据流水线?
27 | Pipeline I/O: Beam数据中转的设计模式
28 | 如何设计创建好一个Beam Pipeline?
29 | 如何测试Beam Pipeline?
模块五 | 决战 Apache Beam 真实硅谷案例 (7讲)
30 | Apache Beam实战冲刺:Beam如何run everywhere?
31 | WordCount Beam Pipeline实战
32 | Beam Window:打通流处理的任督二脉
33 | 横看成岭侧成峰:再战Streaming WordCount
34 | Amazon热销榜Beam Pipeline实战
35 | Facebook游戏实时流处理Beam Pipeline实战(上)
36 | Facebook游戏实时流处理Beam Pipeline实战(下)
模块六 | 大规模数据处理的挑战与未来 (4讲)
37 | 5G时代,如何处理超大规模物联网数据
38 | 大规模数据处理在深度学习中如何应用?
39 | 从SQL到Streaming SQL:突破静态数据查询的次元
40 | 大规模数据处理未来之路
专栏加餐 | 特别福利 (4讲)
FAQ第一期 | 学习大规模数据处理需要什么基础?
加油站 | Practice makes perfect!
FAQ第二期 | Spark案例实战答疑
FAQ第三期 | Apache Beam基础答疑
结束语 (1讲)
结束语 | 世间所有的相遇,都是久别重逢
大规模数据处理实战
登录|注册

29 | 如何测试Beam Pipeline?

蔡元楠 2019-06-28
你好,我是蔡元楠。
今天我要与你分享的主题是“如何测试 Beam Pipeline”。
在上一讲中,我们结合了第 7 讲的内容,一起学习了在 Beam 的世界中我们该怎么设计好对应的设计模式。而在今天这一讲中,我想要讲讲在日常开发中经常会被忽略的,但是又非常重要的一个开发环节——测试。
你知道,我们设计好的 Beam 数据流水线通常都会被放在分布式环境下执行,具体每一步的 Transform 都会被分配到任意的机器上面执行。如果我们在运行数据流水线时发现结果出错了,那么想要定位到具体的机器,再到上面去做调试是不现实的。
当然还有另一种方法,读取一些样本数据集,再运行整个数据流水线去验证哪一步逻辑出错了。但这是一项非常耗时耗力的工作。即便我们可以把样本数据集定义得非常小,从而缩短运行数据流水线运行所需的时间。但是万一我们所写的是多步骤数据流水线的话,就不知道到底在哪一步出错了,我们必须把每一步的中间结果输出出来进行调试。
基于以上种种的原因,在我们正式将数据流水线放在分布式环境上面运行之前,先完整地测试好整个数据流水线逻辑,就变得尤为重要了。
为了解决这些问题,Beam 提供了一套完整的测试 SDK。让我们可以在开发数据流水线的同时,能够实现对一个 Transform 逻辑的单元测试,也可以对整个数据流水线端到端(End-to-End)地测试。
取消
完成
0/1000字
划线
笔记
复制
© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。
该试读文章来自付费专栏《大规模数据处理实战》,如需阅读全部文章,
请订阅文章所属专栏。
立即订阅
登录 后留言

精选留言(5)

  • 明翼
    我期望是基于spark或flink讲解的重实践思想,轻知识,这个可以自己下去学
    2019-07-02
    4
  • 杰洛特
    TestClass 里的这个 PCollection<String> output = input.apply(ParDo.of(new EvenNumberFn())); 里面的泛型是不是写错了?偶数是 Integer 吧?
    2019-11-14
  • ttttt
    看来我得先去学学Java了,不会java,看不太懂。
    2019-09-10
  • 李孟
    Beam 有类似sparksql的api吗?

    作者回复: 谢谢你的提问!有Beam SQL,不过现在只支持Java。

    2019-07-08
  • Ming
    我觉得测试的话,相对麻烦的地方还是在工程脚手架的设计上。
    显然代码本身要抽象封装好,确保测试能覆盖生产代码,而不是生产代码的“拷贝”。
    但有些在代码之外的问题让我挺好奇的:
    如何保证测试数据的格式和生产数据的格式同步?
    流处理的测试怎么模拟时间?
    团队是如何在流程上确保pipeline必须经过测试才能运行的,是通过CI/CD来自动执行pipeline?还是往往通过人力把关?
    2019-06-30
收起评论
5
返回
顶部