重学线性代数
朱维刚
前阿里云资深技术专家
9100 人已学习
新⼈⾸单¥59
登录后,你可以任选2讲全文学习
课程目录
已完结/共 19 讲
开篇词 (1讲)
重学线性代数
15
15
1.0x
00:00/00:00
登录|注册

11 | 如何运用线性代数方法解决图论问题?

你好,我是朱维刚。欢迎你继续跟我学习线性代数,今天我要讲的内容是“如何运用线性代数方法解决图论问题”。
“图”这个字在计算机科学领域很常见,特别是在数据结构中。一说到图,是必定要联系到图论(Graph Theory)的,因为它是以图为研究对象的数学的一个分支。图论中的图,是由若干给定的及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。
说到这,你也许会问,这个和线性代数、矩阵有什么关系?

图的数学定义

既然是数学课,我们还是要先讲一下图的数学定义:一个图 是指一个有序三元组 是非空的顶点集; 是不与 相交的边集; 是关联函数,它使 的每条边对应于 的无序顶点对。如果 是一条边, 是顶点,使得 ,则 连接 ,也就是顶点 的端点。
确认放弃笔记?
放弃后所记笔记将不保留。
新功能上线,你的历史笔记已初始化为私密笔记,是否一键批量公开?
批量公开的笔记不会为你同步至部落
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
  • 深入了解
  • 翻译
    • 英语
    • 中文简体
    • 中文繁体
    • 法语
    • 德语
    • 日语
    • 韩语
    • 俄语
    • 西班牙语
    • 阿拉伯语
  • 解释
  • 总结

线性代数方法在图论问题中的应用是一种重要的数学工具。本文以弹子锁具制造问题和基尔霍夫电流定律为例,阐述了线性代数方法在解决图论问题中的实际应用。通过构造图并生成邻接矩阵和关联矩阵,作者展示了如何利用矩阵乘法来计算特定条件下的锁具数量和分析电路的情况。通过具体案例的讲解,读者可以更直观地理解线性代数方法在图论问题中的应用,以及如何将抽象的数学概念与实际问题相结合。文章还提出了一道商人渡河的线性代数练习题,鼓励读者运用邻接矩阵和$A^{k}$来解决问题。总的来说,本文通过生活中的例子,生动地展示了线性代数方法在图论问题中的应用,为读者提供了有益的参考和学习材料。

仅可试看部分内容,如需阅读全部内容,请付费购买文章所属专栏
《重学线性代数》
新⼈⾸单¥59
立即购买
登录 后留言

全部留言(4)

  • 最新
  • 精选
  • 灰太狼
    老师,您好,Ak那个地方的A4里面的141,165,194这些值能补充一下计算式子吗,虽然不影响理解邻接矩阵的作用,但是这个地方的计算过程我还是想搞明白一下,谢谢老师

    作者回复: 你好,灰太狼,很好的建议,这个计算的话其实就是矩阵乘,我觉得没必要自己一个个去乘,知道原理后可以用一些工具来计算,比如:matlab。

    2020-10-28
    2
  • 与你一起学算法
    想问下老师锁具练习题,求只有两个槽的个数是(C6,2—1)*(2^5-1),对于(2^5-1)应该如何理解呢?我是通过列举的方法求得30的,还望老师解答,麻烦老师了。

    作者回复: 因为是两个槽高的锁具,所以5个槽高的每个都有两种选择,也就是2^5,但再减2是因为需要减去都取相同数字的两种情况。

    2020-10-26
    2
    1
  • 那时刻
    课后练习题,在老师提到的文献 图论中邻接矩阵的应用 中有解答。我对文献中邻接矩阵A的构造不是很理解,麻烦老师给讲解下?

    作者回复: 按照题目首先是构造10个顶点,也就是全部10个允许的状态,通过这10个顶点,构造一个10*10的邻接矩阵A,而因为渡河是双向的,所以还需要一个它的转置矩阵,邻接矩阵A表达的就是这些顶点之间的关系,场景中就是状态的变换。

    2020-08-25
    1
  • fei
    锁具各槽之间的关系图中,从节点4出来到节点3和节点5的线也应该是有的,图上没画出来,容易造成困惑。
    2022-01-21
    2
收起评论
显示
设置
留言
4
收藏
沉浸
阅读
分享
手机端
快捷键
回顶部