从 0 开始学架构
李运华
网名“华仔”,前阿里资深技术专家(P9)
152572 人已学习
新⼈⾸单¥68
登录后,你可以任选4讲全文学习
课程目录
已完结/共 66 讲
结束语 (1讲)
结课测试 (1讲)
从 0 开始学架构
15
15
1.0x
00:00/00:00
登录|注册

12 | 架构设计流程:评估和选择备选方案

备选方案2的缺点
备选方案2的优点
排除备选方案3的原因
排除备选方案1的原因
业务主管意见
测试代表意见
运维代表意见
中间件团队意见
业务主管意见
测试代表意见
运维代表意见
中间件团队意见
测试代表意见
运维代表意见
中间件团队意见
业务主管意见
按优先级选择
加权法
数量对比法
选择备选方案2的原因
备选方案3:集群 + 自研存储系统
备选方案2:集群 + MySQL存储
备选方案1:采用开源Kafka方案
架构设计原则3:演化原则
架构设计原则2:简单原则
架构设计原则1:合适原则
质量属性点
正确的选择方法
评估和选择备选方案实战
360度环评
领导派
最熟派
最牛派
最简派
主观评价标准
没有完美方案
方案可行性
小结
架构设计第3步:评估和选择备选方案
指导思想
挑选最终方案的挑战
架构设计流程第三步:评估和选择备选方案

该思维导图由 AI 生成,仅供参考

上一期我讲了设计备选方案,在完成备选方案设计后,如何挑选出最终的方案也是一个很大的挑战,主要原因有:
每个方案都是可行的,如果方案不可行就根本不应该作为备选方案。
没有哪个方案是完美的。例如,A 方案有性能的缺点,B 方案有成本的缺点,C 方案有新技术不成熟的风险。
评价标准主观性比较强,比如设计师说 A 方案比 B 方案复杂,但另外一个设计师可能会认为差不多,因为比较难将“复杂”一词进行量化。因此,方案评审的时候我们经常会遇到几个设计师针对某个方案或者某个技术点争论得面红耳赤。
正因为选择备选方案存在这些困难,所以实践中很多设计师或者架构师就采取了下面几种指导思想:
最简派
设计师挑选一个看起来最简单的方案。例如,我们要做全文搜索功能,方案 1 基于 MySQL,方案 2 基于 Elasticsearch。MySQL 的查询功能比较简单,而 Elasticsearch 的倒排索引设计要复杂得多,写入数据到 Elasticsearch,要设计 Elasticsearch 的索引,要设计 Elasticsearch 的分布式……全套下来复杂度很高,所以干脆就挑选 MySQL 来做吧。
最牛派
最牛派的做法和最简派正好相反,设计师会倾向于挑选技术上看起来最牛的方案。例如,性能最高的、可用性最好的、功能最强大的,或者淘宝用的、微信开源的、Google 出品的等。
我们以缓存方案中的 Memcache 和 Redis 为例,假如我们要挑选一个搭配 MySQL 使用的缓存,Memcache 是纯内存缓存,支持基于一致性 hash 的集群;而 Redis 同时支持持久化、支持数据字典、支持主备、支持集群,看起来比 Memcache 好很多啊,所以就选 Redis 好了。
最熟派
设计师基于自己的过往经验,挑选自己最熟悉的方案。我以编程语言为例,假如设计师曾经是一个 C++ 经验丰富的开发人员,现在要设计一个运维管理系统,由于对 Python 或者 Ruby on Rails 不熟悉,因此继续选择 C++ 来做运维管理系统。
领导派
领导派就更加聪明了,列出备选方案,设计师自己拿捏不定,然后就让领导来定夺,反正最后方案选的对那是领导厉害,方案选的不对怎么办?那也是领导“背锅”。
其实这些不同的做法本身并不存在绝对的正确或者绝对的错误,关键是不同的场景应该采取不同的方式。也就是说,有时候我们要挑选最简单的方案,有时候要挑选最优秀的方案,有时候要挑选最熟悉的方案,甚至有时候真的要领导拍板。因此关键问题是:这里的“有时候”到底应该怎么判断?今天我就来讲讲架构设计流程的第 3 步:评估和选择备选方案。
确认放弃笔记?
放弃后所记笔记将不保留。
新功能上线,你的历史笔记已初始化为私密笔记,是否一键批量公开?
批量公开的笔记不会为你同步至部落
公开
同步至部落
取消
完成
0/2000
荧光笔
直线
曲线
笔记
复制
AI
  • 深入了解
  • 翻译
    • 英语
    • 中文简体
    • 中文繁体
    • 法语
    • 德语
    • 日语
    • 韩语
    • 俄语
    • 西班牙语
    • 阿拉伯语
  • 解释
  • 总结

本文介绍了架构设计流程中评估和选择备选方案的实战案例。在“前浪微博”消息队列系统的备选方案评审会议中,架构师组织了研发、测试、运维和业务主管等多方参与的讨论,针对三个备选方案进行了360度环评。备选方案1采用开源Kafka方案,备选方案2为集群+MySQL存储,备选方案3为集群+自研存储系统。经过讨论和评估,最终选择了备选方案2。文章强调了在备选方案选择过程中,需要考虑业务需求特点、运维团队经验、技术体系和团队人员技术水平等因素,而不仅仅是技术性能和优越性。备选方案的选择需要按照质量属性的优先级排序,避免采用看似正确但实际错误的选择方法。通过本文,读者可以了解到在架构设计流程中如何评估和选择备选方案,以及如何应对备选方案选择中的困难和挑战。文章内容生动具体,通过实际案例展示了备选方案选择的复杂性和多方因素的影响,为读者提供了宝贵的经验和指导。

仅可试看部分内容,如需阅读全部内容,请付费购买文章所属专栏
《从 0 开始学架构》
新⼈⾸单¥68
立即购买
登录 后留言

全部留言(66)

  • 最新
  • 精选
  • 王旭东
    Kafka没用过,但是上网看了相关对比,认为阿里选择自己开发RocketMQ更多是业务的驱动,当业务更多的需要以下功能的支持时,kafka不能满足或者ActiveMQ等其他消息中间件不能满足,所以选择自己开发(RocketMQ设计的真的很牛) 1、数据可靠性 kafka使用异步刷盘方式,异步Replication RocketMQ支持异步刷盘,同步刷盘,同步Replication,异步Replication 2、严格的消息顺序 Kafka支持消息顺序,但是一台Broker宕机后,就会产生消息乱序 RocketMQ支持严格的消息顺序,在顺序消息场景下,一台Broker宕机后,发送消息会失败,但是不会乱序 3、消费失败重试机制 Kafka消费失败不支持重试 RocketMQ消费失败支持定时重试,每次重试间隔时间顺延 4、定时消息 Kafka不支持定时消息 RocketMQ支持定时消息 5、分布式事务消息 Kafka不支持分布式事务消息 阿里云ONS支持分布式定时消息,未来开源版本的RocketMQ也有计划支持分布式事务消息 6、消息查询机制 Kafka不支持消息查询 RocketMQ支持根据Message Id查询消息,也支持根据消息内容查询消息(发送消息时指定一个Message Key,任意字符串,例如指定为订单Id) 7、消息回溯 Kafka理论上可以按照Offset来回溯消息 RocketMQ支持按照时间来回溯消息,精度毫秒,例如从一天之前的某时某分某秒开始重新消费消息 ………

    作者回复: 赞,整理的很详细

    2018-05-24
    9
    320
  • 公号-技术夜未眠
    心得: 架构设计流程-评估和选择备选方案 1 评估和选择备选方案的方法 按优先级选择,即架构师综合当前的业务发展情况、团队人员规模和技能、业务发展预测等因素,将质量属性按照优先级排序,首先挑选满足第一优先级的,如果方案都满足,那就再看第二优先级……以此类推。 2 RocketMQ 和 Kafka 有什么区别? (1) 适用场景 Kafka适合日志处理;RocketMQ适合业务处理。 (2) 性能 Kafka单机写入TPS号称在百万条/秒;RocketMQ大约在10万条/秒。Kafka单机性能更高。 (3) 可靠性 RocketMQ支持异步/同步刷盘;异步/同步Replication;Kafka使用异步刷盘方式,异步Replication。RocketMQ所支持的同步方式提升了数据的可靠性。 (4) 实时性 均支持pull长轮询,RocketMQ消息实时性更好 (5) 支持的队列数 Kafka单机超过64个队列/分区,消息发送性能降低严重;RocketMQ单机支持最高5万个队列,性能稳定(这也是适合业务处理的原因之一) 3 为什么阿里会自研RocketMQ? (1) Kafka的业务应用场景主要定位于日志传输;对于复杂业务支持不够 (2) 阿里很多业务场景对数据可靠性、数据实时性、消息队列的个数等方面的要求很高 (3)当业务成长到一定规模,采用开源方案的技术成本会变高(开源方案无法满足业务的需要;旧版本、自开发代码与新版本的兼容等) (4) 阿里在团队、成本、资源投入等方面约束性条件几乎没有

    作者回复: 财大气粗能力又强业务还复杂,所以就自己开发了😂

    2018-05-24
    4
    135
  • 案例很典型,所在项目,先选了3,1.0上线后效果不错,后期业务扩展,投入跟不上,3的缺点不断暴露,到后来大家就在吐槽为啥要造轮子。开始否决3,重构, 选择了1,运维话语权弱,被忽略了。至于为啥不选2,就是面子上过不去,拿不出手。项目不光是为了业务,也为了架构师,领导的面子,被拿来和公司内其他项目做横向比较时,比较好吹。至于运维的哥们,也乐意学些新东西,提升自我价值。所以,选择1大家都开心,除了项目的投入变大

    作者回复: 你这个案例经典,备选方案都涵盖了,设计原则也涵盖了😃😃

    2018-05-27
    5
    84
  • Regular
    kafka针对海量数据,但是对数据的正确度要求不是十分严格。 而阿里巴巴中用于交易相关的事情较多,对数据的正确性要求极高,Kafka不合适,然后就自研了RocketMQ。

    作者回复: 赞同

    2018-05-24
    62
  • alexgreenbar
    我觉得应该选取kafka方案,运维以scala为理由觉得运维复杂站不住脚,实际上在Kafka运维时很少需要了解Scala,而且目前基于Kafka的开发也基本上使用Java API。另外认为kafka是用于日志传输,所以不适合系统的业务事件是个更大的误区,Kafka本身在最早实现时的确是为了传输日志,但后来经过多年发展,其适用范围早不限于日志,并且很多采取Kafka的公司并非用它来处理日志,kafka背后的Confluence公司提供了很多基于kafka来简化系统实现的例子,值得架构师参考。

    作者回复: 这个模拟的场景可能是2013年😃😃

    2018-05-26
    3
    47
  • 陈奇
    1、就备选方案选择来说,方案2确实可行,但就我们使用Kafka经验来讲,Kafka确实很成熟,运维成本较低。架构师在选择方案时,需要对方案中涉及到的工具烂熟于心。 2、关于RocketMQ和Kafka区别,有些回答罗列了很多功能的差异,个人觉得无太大意义。大家都在发展,功能的差异会很快抹平的。我想说点区别是,1、架构上RocketMQ不依赖zk,而Kafka重度依赖zk;2、RocketMQ没有完全开源的,有一些功能需要自己重写;而Kafka应用广泛,社区支持力度大,这样对运维压力和成本会小很多。

    作者回复: 人少或者没有统一的运维体系,kafka是最稳妥的选择

    2018-06-23
    22
  • bluefantasy
    几乎所有的人都说kafka是异步刷盘会导致消息可靠性出问题。但是我想说kafka如果配置了每写一条消息就强制刷盘,再加上配置kafka集群中所有副本全部同步之后再返回写入成功。在这种配置下消息的可靠性是可以保障的。 只不过是这种配置下性能低而已。 请问华仔,这种配置下kafka是可以保证消息的可靠性的对吧?

    作者回复: 没有用过呢,按道理是可以保证的

    2018-05-24
    6
    14
  • zhouwm
    kafka同步刷盘同步复制早支持了,同步复制不会有乱序。kafka很稳定的,几个产品都用过,简单场景没啥问题。rocketmq开源版本貌似master挂掉后slave无法自动切换为master,可读不可写!阿里中间件博客有时候有点...

    作者回复: 是的,kafka目前是最成熟的,久经考验

    2018-06-15
    2
    12
  • narry
    这个应该有多个原因吧,个人感觉有下面几条,1)业务特性需要,最初kafka不支持事务性消息,而rocketmq支持,2)rocketmq支持broker端的消息过滤 3)淘宝的java能力比scala强很多 ,为了运维稳定,就学习了kafka的优点,进行了重写 ,毕竟运维才是软件的核心生命周期

    作者回复: 运维是架构设计的重要考虑因素

    2018-05-24
    11
  • 孙振超
    方案2是整体最优解,各个利益方都收益。代码上线只是开始,后续漫长的使用优化维护需要很大的精力。 对于rocketmq和kafka,不少留言提到是因为阿里有钱,这还真不是。阿里有钱,怎么没有自己搞spring、ibatis、java、linux呢?归根还在于简单和适合原则,kafka和阿里需要的高可用、高稳定、消息不可丢失、可蓄洪、可重放等场景不匹配,同时开发新的成本又在可接受范围之内才自己开发的。 如果google的大数据三套件,是在没有已有方案的情况下去自己实现的。

    作者回复: 有一定道理,有钱真不是决定做主要原因,没钱没人才是决定不做的主要原因😃😃

    2018-06-10
    2
    9
收起评论
显示
设置
留言
66
收藏
沉浸
阅读
分享
手机端
快捷键
回顶部