• 术子米德
    2024-04-12 来自日本
    🤔☕️🤔☕️🤔 【R】限制:LLM每次能处理的输入与输出token数量。 关键:从架构设计和测试策略两个维度,将需求分解到足够小的任务。 LLM:任务分解 + 测试代码 + 生产代码。 架构:指导每日工作的任务划分。 测试:TDD + PP with LLM。 PP = Pair Programming 【.I.】LLM的Context Token数量,似乎是它的缺点,看到那个谁已经整得很大,眼看着能把整个代码仓扔进去,貌似很好的样子。可是,我倒认为,这样的限制,实际上可以利用起来,发挥出局部性的聚焦优势。无论我在多大的代码仓里干活,我实际要做的事情,越是在局部,越是能够做得干净利落,越是跟其它耦合,那就拖泥带水踩坑前行。 【.I.】架构,这个词写出来,总有点看似高级又不明所言感。实际上,还不是手头有怎样的兵,就会演化出怎样的架构,无论写在纸上还是落进代码仓里。如今,LLM作为新兵入队,自然会变成影响演化的力量,差别在于,LLM凭自己的生命力,见空就座,还是听话就座,我猜测是前者,而且我相信我的猜测是对的,LLM的力量在于,只要坐下来,就会黏住。 【Q】团队是否也有Clear、Complica、Complex的认知状态?如果有的话,怎么能判断出来当下团队整体处于什么样的认知状态? —  by 术子米德@2024年4月12日
    展开

    作者回复: 实际上 llm并不能保证在大context下的准确推理 目前(2024)来看 给的context越多 llm的推理准确度是下降的

    
    1